Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 131(4): 525-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26898910

RESUMO

Aggregation and toxicity of the amyloid ß-peptide (Aß) are considered as critical events in the initiation and progression of Alzheimer's disease (AD). Recent evidence indicated that soluble oligomeric Aß assemblies exert pronounced toxicity, rather than larger fibrillar aggregates that deposit in the forms of extracellular plaques. While some rare mutations in the Aß sequence that cause early-onset AD promote the oligomerization, molecular mechanisms that induce the formation or stabilization of oligomers of the wild-type Aß remain unclear. Here, we identified an Aß variant phosphorylated at Ser26 residue (pSer26Aß) in transgenic mouse models of AD and in human brain that shows contrasting spatio-temporal distribution as compared to non-phosphorylated Aß (npAß) or other modified Aß species. pSer26Aß is particularly abundant in intraneuronal deposits at very early stages of AD, but much less in extracellular plaques. pSer26Aß assembles into a specific oligomeric form that does not proceed further into larger fibrillar aggregates, and accumulates in characteristic intracellular compartments of granulovacuolar degeneration together with TDP-43 and phosphorylated tau. Importantly, pSer26Aß oligomers exert increased toxicity in human neurons as compared to other known Aß species. Thus, pSer26Aß could represent a critical species in the neurodegeneration during AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Serina/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais , Neuroblastoma/patologia , Fosforilação/genética , Agregados Proteicos/genética , Fatores de Tempo , Transfecção
2.
Am J Pathol ; 182(5): 1769-79, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23499461

RESUMO

Alterations in the microtubule (MT)-associated protein, tau, have emerged as a pivotal phenomenon in several neurodegenerative disorders, including frontotemporal dementia and Alzheimer's disease. Although compelling lines of evidence from various experimental models suggest that hyperphosphorylation and conformational changes of tau can cause its aggregation into filaments, the actual tau species and effective mechanisms that conspire to trigger the degeneration of human neurons remain obscure. Herein, we explored whether human embryonic stem cell-derived neural stem cells can be exploited to study consequences of an overexpression of 2N4R tau (two normal N-terminal and four MT-binding domains; n-tau) versus pseudohyperphosphorylated tau (p-tau) directly in human neurons. Given the involvement of tau in MT integrity and cellular homeostasis, we focused on the effects of both tau variants on subcellular transport and neuronal survival. By using inducible lentiviral overexpression, we show that p-tau, but not n-tau, readily leads to an MC-1-positive protein conformation and impaired mitochondrial transport. Although these alterations do not induce cell death under standard culture conditions, p-tau-expressing neurons cultured under non-redox-protected conditions undergo degeneration with formation of axonal varicosities sequestering transported proteins and progressive neuronal cell death. Our data support a causative link between the phosphorylation and conformational state of tau, microtubuli-based transport, and the vulnerability of human neurons to oxidative stress. They further depict human embryonic stem cell-derived neurons as a useful experimental model for studying tau-associated cellular alterations in an authentic human system.


Assuntos
Células-Tronco Embrionárias/citologia , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Morte Celular , Diferenciação Celular , Humanos , Camundongos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Oxirredução , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Tauopatias/metabolismo , Proteínas tau/química
3.
Am J Pathol ; 180(6): 2404-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22510327

RESUMO

Alzheimer's disease (AD) is the most frequent cause of dementia. There is compelling evidence that the proteolytic processing of the amyloid precursor protein (APP) and accumulation of amyloid-ß (Aß) peptides play critical roles in AD pathogenesis. Due to limited access to human neural tissue, pathogenetic studies have, so far, mostly focused on the heterologous overexpression of mutant human APP in non-human cells. In this study, we show that key steps in proteolytic APP processing are recapitulated in neurons generated from human embryonic and induced pluripotent stem cell-derived neural stem cells (NSC). These human NSC-derived neurons express the neuron-specific APP(695) splice variant, BACE1, and all members of the γ-secretase complex. The human NSC-derived neurons also exhibit a differentiation-dependent increase in Aß secretion and respond to the pharmacotherapeutic modulation by anti-amyloidogenic compounds, such as γ-secretase inhibitors and nonsteroidal anti-inflammatory drugs. Being highly amenable to genetic modification, human NSCs enable the study of mechanisms caused by disease-associated mutations in human neurons. Interestingly, the AD-associated PS1(L166P) variant revealed a partial loss of γ-secretase function, resulting in the decreased production of endogenous Aß40 and an increased Aß42/40 ratio. The PS1(L166P) mutant is also resistant to γ-secretase modulation by nonsteroidal anti-inflammatory drugs. Pluripotent stem cell-derived neurons thus provide experimental access to key steps in AD pathogenesis and can be used to screen pharmaceutical compounds directly in a human neuronal system.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Mutação , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Presenilina-1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/fisiologia , Anti-Inflamatórios não Esteroides/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Inibidores Enzimáticos/farmacologia , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fragmentos de Peptídeos/biossíntese
4.
Stem Cell Reports ; 1(6): 491-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24371804

RESUMO

Increasing evidence suggests that elevated Aß42 fractions in the brain cause Alzheimer's disease (AD). Although γ-secretase modulators (GSMs), including a set of nonsteroidal anti-inflammatory drugs (NSAIDs), were found to lower Aß42 in various model systems, NSAID-based GSMs proved to be surprisingly inefficient in human clinical trials. Reasoning that the nonhuman and nonneuronal cells typically used in pharmaceutical compound validation might not adequately reflect the drug responses of human neurons, we used human pluripotent stem cell-derived neurons from AD patients and unaffected donors to explore the efficacy of NSAID-based γ-secretase modulation. We found that pharmaceutically relevant concentrations of these GSMs that are clearly efficacious in conventional nonneuronal cell models fail to elicit any effect on Aß42/Aß40 ratios in human neurons. Our work reveals resistance of human neurons to NSAID-based γ-secretase modulation, highlighting the need to validate compound efficacy directly in the human cell type affected by the respective disease.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Neurônios/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Neurônios/citologia , Neurônios/enzimologia , Fragmentos de Peptídeos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA