RESUMO
To enhance equity and diversity in undergraduate biology, recent research in biology education focuses on best practices that reduce learning barriers for all students and improve academic performance. However, the majority of current research into student experiences in introductory biology takes place at large, predominantly White institutions. To foster contextual knowledge in biology education research, we harnessed data from a large research coordination network to examine the extent of academic performance gaps based on demographic status across institutional contexts and how two psychological factors, test anxiety and ethnicity stigma consciousness, may mediate performance in introductory biology. We used data from seven institutions across three institution types: 2-year community colleges, 4-year inclusive institutions (based on admissions selectivity; hereafter, inclusive), and 4-year selective institutions (hereafter, selective). In our sample, we did not observe binary gender gaps across institutional contexts, but found that performance gaps based on underrepresented minority status were evident at inclusive and selective 4-year institutions, but not at community colleges. Differences in social psychological factors and their impacts on academic performance varied substantially across institutional contexts. Our findings demonstrate that institutional context can play an important role in the mechanisms underlying performance gaps.
Assuntos
Desempenho Acadêmico , Estudantes , Humanos , Aprendizagem , Grupos Minoritários , UniversidadesRESUMO
The phenotypic variance is assumed to be greater in a more heterogeneous environment. The validity of this assumption is important for microevolutionists to extrapolate results from the laboratory to field environments. We subjected clutches of eggs from common snapping turtles (Chelydra serpentina) to a split-family design to evaluate the variability in incubation time and four size traits of neonates from eggs incubated in the laboratory and those left in situ. Mean size measurements were similar between the laboratory and the field, but incubation time was systematically longer in the field. We found no tendency among clutches for hatchlings resulting from eggs incubated in laboratory or field environments to demonstrate greater variability. Also contrary to expectation, clutches that experienced greater thermal variation in the field did not exhibit greater variation in phenotypic traits. Consequently, extrapolating results from the laboratory to the field may not always be problematic for microevolutionary analyses.