Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(3): e3001578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263320

RESUMO

Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Análise por Conglomerados , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo
2.
J Neuroinflammation ; 20(1): 273, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990235

RESUMO

Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.


Assuntos
Microglia , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Microglia/patologia , Macrófagos/patologia , Traumatismos da Medula Espinal/patologia , Fagócitos/patologia , Medula Espinal/patologia
3.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918925

RESUMO

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Assuntos
Doença de Alzheimer , Astrócitos , Camundongos , Humanos , Masculino , Animais , Idoso , Lactente , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
4.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
5.
Glia ; 70(1): 50-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519378

RESUMO

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Encéfalo , Camundongos , Bainha de Mielina , Neurogênese , Oligodendroglia
6.
J Neuroinflammation ; 19(1): 235, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167544

RESUMO

A diverse heterogeneity of microglial cells was previously described in Alzheimer's disease (AD) pathology, including dark microglia, a state characterized by ultrastructural markers of cellular stress. To provide novel insights into the roles of dark microglia during aging in the context of AD pathology, we performed a quantitative density and ultrastructural analysis of these cells using high-throughput scanning electron microscopy in the ventral hippocampus CA1 stratum lacunosum-moleculare of 20-month-old APP-PS1 vs C57BL/6J male mice. The density of dark microglia was significantly higher in APP-PS1 vs C57BL/6J mice, with these cells accounting for nearly half of all microglia observed near amyloid-beta (Aß) plaques. This dark microglial state interacted more with dystrophic neurites compared to other APP-PS1 microglia and possessed glycogen granules, associated with a metabolic shift toward glycolysis, which provides the first ultrastructural evidence of their presence in microglia. Dark microglia were further observed in aging human post-mortem brain samples showing similar ultrastructural features as in mouse. Overall, our results provide a quantitative ultrastructural characterization of a microglial state associated with cellular stress (i.e., dark microglia) that is primarily restricted near Aß plaques and dystrophic neurites. The presence of this microglial state in the aging human post-mortem brain is further revealed.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glicogênio/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia
7.
J Neuroinflammation ; 17(1): 98, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241286

RESUMO

BACKGROUND: Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that affects cognitive and motor abilities by primarily targeting the striatum and cerebral cortex. HD is caused by a mutation elongating the CAG repeats within the Huntingtin gene, resulting in HTT protein misfolding. Although the genetic cause of HD has been established, the specific susceptibility of neurons within various brain structures has remained elusive. Microglia, which are the brain's resident macrophages, have emerged as important players in neurodegeneration. Nevertheless, few studies have examined their implication in HD. METHODS: To provide novel insights, we investigated the maturation and dysfunction of striatal microglia using the R6/2 mouse model of HD. This transgenic model, which presents with 120+/-5 CAG repeats, displays progressive motor deficits beginning at 6 weeks of age, with full incapacitation by 13 weeks. We studied microglial morphology, phagocytic capacity, and synaptic contacts in the striatum of R6/2 versus wild-type (WT) littermates at 3, 10, and 13 weeks of age, using a combination of light and transmission electron microscopy. We also reconstructed dendrites and determined synaptic density within the striatum of R6/2 and WT littermates, at nanoscale resolution using focused ion beam scanning electron microscopy. RESULTS: At 3 weeks of age, prior to any known motor deficits, microglia in R6/2 animals displayed a more mature morphological phenotype than WT animals. Microglia from R6/2 mice across all ages also demonstrated increased phagocytosis, as revealed by light microscopy and transmission electron microscopy. Furthermore, microglial processes from 10-week-old R6/2 mice made fewer contacts with synaptic structures than microglial processes in 3-week-old R6/2 mice and age-matched WT littermates. Synaptic density was not affected by genotype at 3 weeks of age but increased with maturation in WT mice. The location of synapses was lastly modified in R6/2 mice compared with WT controls, from targeting dendritic spines to dendritic trunks at both 3 and 10 weeks of age. CONCLUSIONS: These findings suggest that microglia may play an intimate role in synaptic alteration and loss during HD pathogenesis.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Forma Celular/fisiologia , Modelos Animais de Doenças , Feminino , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Neurônios/patologia , Sinapses/patologia
8.
Brain Behav Immun ; 90: 81-96, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755645

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Humanos , Levodopa , Macaca fascicularis , Microglia , Doença de Parkinson/tratamento farmacológico
9.
J Neurochem ; 149(5): 562-581, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30702751

RESUMO

This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.


Assuntos
Doença de Alzheimer/imunologia , Inflamação/imunologia , Microglia/imunologia , Degeneração Neural/imunologia , Doença de Alzheimer/patologia , Animais , Humanos , Microglia/metabolismo , Degeneração Neural/patologia
10.
FASEB J ; 32(9): 5143-5161, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29913563

RESUMO

The histidine triad nucleotide-binding protein 2 (HINT-2) is a mitochondrial adenosine phosphoramidase expressed in hepatocytes. The phenotype of Hint2 knockout ( Hint2-/-) mice includes progressive hepatic steatosis and lysine hyperacetylation of mitochondrial proteins, which are features of respiratory chain malfunctions. We postulated that the absence of HINT-2 induces a defect in mitochondria bioenergetics. Isolated Hint2-/- hepatocytes produced less ATP and generated a lower mitochondrial membrane potential than did Hint2+/+ hepatocytes. In extracellular flux analyses with glucose, the basal, ATP-linked, and maximum oxygen consumption rates (OCRs) were decreased in Hint2-/- hepatocytes and in HepG2 cells lacking HINT-2. Conversely, in HINT-2 overexpressing SNU-449 and HepG2 cells, the basal, ATP-linked, and maximum OCRs were increased. Similarly, with palmitate, basal and maximum OCRs were decreased in Hint2-/- hepatocytes, but they were increased in HINT-2 overexpressing HepG2 cells. When assayed with radiolabeled substrate, palmitate oxidation was reduced by 25% in Hint2-/- mitochondria. In respirometry assays, complex I- and II-driven, coupled and uncoupled respirations and complex IV KCN-sensitive respiration were reduced in Hint2-/- mitochondria. Furthermore, HINT-2 associated with cardiolipin and glucose-regulated protein 75 kDa. Our study shows decreased electron transfer and oxidative phosphorylation capacity in the absence of HINT-2. The bioenergetics deficit accumulated over time in hepatocytes lacking HINT-2 likely leads to the secondary outcome of steatosis.-Rajasekaran, R., Felser, A., Nuoffer, J.-M., Dufour, J.-F., St-Pierre, M. V. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Transporte de Elétrons/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Neoplasias Hepáticas/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fosforilação Oxidativa
11.
J Cell Physiol ; 233(10): 7057-7070, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29744875

RESUMO

Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles.


Assuntos
Conexinas/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos , Mioblastos/metabolismo , Regeneração/fisiologia
12.
Brain Behav Immun ; 73: 450-469, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29908963

RESUMO

Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS. In the current study, we have performed a longitudinal behavioral assessment on mice bearing a Wrn helicase deletion. Behavioral tests demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behavior, and deficits in both spatial and social novelty memories in Wrn mutant mice compared to age-matched wild type mice. These neurological deficits were associated with biochemical and histological changes in the brain of aged Wrn mutant mice. Microglia, resident immune cells that regulate neuronal plasticity and function in the brain, were hyper-ramified in multiple regions involved with the behavioral deficits of Wrn mutant mice. Furthermore, western analyses indicated that Wrn mutant mice exhibited an increase of oxidative stress markers in the prefrontal cortex. Supporting these findings, electron microscopy studies revealed increased cellular aging and oxidative stress features, among microglia and neurons respectively, in the prefrontal cortex of aged Wrn mutant mice. In addition, multiplex immunoassay of serum identified significant changes in the expression levels of several pro- and anti-inflammatory cytokines. Taken together, these findings indicate that microglial dysfunction and neuronal oxidative stress, associated with peripheral immune system alterations, might be important driving forces leading to abnormal neurological symptoms in WS thus suggesting potential therapeutic targets for interventions.


Assuntos
Helicase da Síndrome de Werner/fisiologia , Síndrome de Werner/genética , Animais , Senescência Celular/fisiologia , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Mutantes , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Werner/imunologia , Síndrome de Werner/fisiopatologia , Helicase da Síndrome de Werner/genética
13.
Am J Physiol Gastrointest Liver Physiol ; 310(7): G497-509, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26767982

RESUMO

The histidine nucleotide-binding protein, Hint2, is a mitochondrial phosphoramidase expressed in liver, brown fat, pancreas, and muscle. The livers of Hint2 knockout (Hint2(-/-)) mice accumulate triglycerides and show a pattern of mitochondrial protein lysine hyperacetylation. The extent and nature of the lysine acetylation changes and the response of Hint2(-/-) mice to nutritional challenges that elicit a modification of protein acetylation have not been investigated. To compare the adaptation of Hint2(-/-) and control (Hint2(+/+)) mice with episodes of fasting and high-fat diet (HFD), we subjected animals to either feeding ad libitum or fasting for 24 h, and to either a HFD or control diet for 8 wk. Triglyceride content was higher in Hint2(-/-) than in Hint2(+/+) livers, whereas plasma triglycerides were fourfold lower. Malonyl-CoA levels were increased twofold in Hint2(-/-) livers. After 24 h fasting, Hint2(-/-) displayed a decrease in body temperature, commensurate with a decrease in mass of brown fat and downregulation of uncoupling protein 1. HFD-treated Hint2(-/-) livers showed more steatosis, and plasma insulin and cholesterol were higher than in Hint(+/+) mice. Several proteins identified as substrates of sirtuin 3 and 5 and active in intermediary and ketone metabolism were hyperacetylated in liver and brown fat mitochondria after both HFD and fasting regimens. Glutamate dehydrogenase activity was downregulated in fed and fasted livers, and this was attributed to an increase in acetylation and ADP-ribosylation. The absence of Hint2 deregulates the posttranslational modification of several mitochondrial proteins, which impedes the adaptation to episodes of nutritional stress.


Assuntos
Jejum/metabolismo , Fígado Gorduroso/metabolismo , Deleção de Genes , Hidrolases/deficiência , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/deficiência , Acetilação , Adaptação Fisiológica , Adenosina Difosfato Ribose/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Regulação da Temperatura Corporal , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Predisposição Genética para Doença , Glutamato Desidrogenase/metabolismo , Hidrolases/genética , Insulina/sangue , Fígado/patologia , Fígado/fisiopatologia , Malonil Coenzima A/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/genética , Estado Nutricional , Fenótipo , Processamento de Proteína Pós-Traducional , Triglicerídeos/sangue , Proteína Desacopladora 1/metabolismo
14.
Pharm Res ; 33(12): 2847-2878, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27644937

RESUMO

The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Placenta/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Citocinas/metabolismo , Feminino , Hormônios/metabolismo , Humanos , Troca Materno-Fetal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Preparações Farmacêuticas/metabolismo , Placenta/metabolismo , Polimorfismo Genético , Gravidez , Xenobióticos/metabolismo
15.
Hepatology ; 57(5): 2037-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22961760

RESUMO

UNLABELLED: The histidine triad nucleotide-binding (HINT2) protein is a mitochondrial adenosine phosphoramidase expressed in the liver and pancreas. Its physiological function is unknown. To elucidate the role of HINT2 in liver physiology, the mouse Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J × 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycemia, and an increase in plasma interprandial insulin but a decrease in glucose-stimulated insulin secretion and defective thermoregulation upon fasting. Leptin messenger RNA (mRNA) in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II-III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. Hypoxia-inducible factor-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-coenzyme A dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) versus 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . CONCLUSION: Hint2/HINT2 positively regulates mitochondrial lipid metabolism and respiration and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins.


Assuntos
Glicemia/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glutamato Desidrogenase/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hidrolases/deficiência , Hidrolases/genética , Hidrolases/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo
16.
Commun Med (Lond) ; 4(1): 39, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443644

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease worldwide, and can rapidly progress to metabolic dysfunction-associated steatohepatitis (MASH). Accurate preclinical models and methodologies are needed to understand underlying metabolic mechanisms and develop treatment strategies. Through meta-analysis of currently proposed mouse models, we hypothesized that a diet- and chemical-induced MASH model closely resembles the observed lipid metabolism alterations in humans. METHODS: We developed transcriptomics-driven metabolic pathway analysis (TDMPA), a method to aid in the evaluation of metabolic resemblance. TDMPA uses genome-scale metabolic models to calculate enzymatic reaction perturbations from gene expression data. We performed TDMPA to score and compare metabolic pathway alterations in MASH mouse models to human MASH signatures. We used an already-established WD+CCl4-induced MASH model and performed functional assays and lipidomics to confirm TDMPA findings. RESULTS: Both human MASH and mouse models exhibit numerous altered metabolic pathways, including triglyceride biosynthesis, fatty acid beta-oxidation, bile acid biosynthesis, cholesterol metabolism, and oxidative phosphorylation. We confirm a significant reduction in mitochondrial functions and bioenergetics, as well as in acylcarnitines for the mouse model. We identify a wide range of lipid species within the most perturbed pathways predicted by TDMPA. Triglycerides, phospholipids, and bile acids are increased significantly in mouse MASH liver, confirming our initial observations. CONCLUSIONS: We introduce TDMPA, a methodology for evaluating metabolic pathway alterations in metabolic disorders. By comparing metabolic signatures that typify human MASH, we show a good metabolic resemblance of the WD+CCl4 mouse model. Our presented approach provides a valuable tool for defining metabolic space to aid experimental design for assessing metabolism.


Steatotic liver disease, in which fat accumulates in the liver, is one of the most prevalent liver diseases worldwide and it is important to develop relevant animal models to help us understand its mechanisms. We aimed to assess the suitability of animal models for studying steatotic liver disease in humans. We developed an approach that evaluates how genes affect the metabolism or the chemical reactions and processes that occur in the body. We used it to compare a mouse model of the disease with human observations. Our results showed that there are significant changes in fat and energy metabolism in the mouse model. These observations match with changes observed in humans, suggesting it is a good model for studying human disease. Our findings could advance our understanding of the disease as well as help define strategies for its treatment.

17.
Pediatrics ; 153(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38356411

RESUMO

CONTEXT: Most youths who die by suicide have interfaced with a medical system in the year preceding their death, placing outpatient medical settings on the front lines for identification, assessment, and intervention. OBJECTIVE: Review and consolidate the available literature on suicide risk screening and brief intervention with youths in outpatient medical settings and examine common outcomes. DATA SOURCES: The literature search looked at PubMed, OVID, CINAHL, ERIC, and PsychInfo databases. STUDY SELECTION: Interventions delivered in outpatient medical settings assessing and mitigating suicide risk for youths (ages 10-24). Designs included randomized controlled trials, prospective and retrospective cohort studies, and case studies. DATA EXTRACTION: Authors extracted data on rates of referral to behavioral health services, initiation/adjustment of medication, follow-up in setting of assessment, suicidal ideation at follow-up, and suicide attempts and/or crisis services visited within 1 year of initial assessment. RESULTS: There was no significant difference in subsequent suicide attempts between intervention and control groups. Analysis on subsequent crisis service could not be performed due to lack of qualifying data. Key secondary findings were decreased immediate psychiatric hospitalizations and increased mental health service use, along with mild improvement in subsequent depressive symptoms. LIMITATIONS: The review was limited by the small number of studies meeting inclusion criteria, as well as a heterogeneity of study designs and risk of bias across studies. CONCLUSIONS: Brief suicide interventions for youth in outpatient medical settings can increase identification of risk, increase access to behavioral health services, and for crisis interventions, can limit psychiatric hospitalizations.


Assuntos
Intervenção em Crise , Ideação Suicida , Adolescente , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Tentativa de Suicídio , Criança , Adulto Jovem
18.
Can J Occup Ther ; 80(1): 28-34, 2013 Feb.
Artigo em Francês | MEDLINE | ID: mdl-23550494

RESUMO

BACKGROUND: The use of occupation-focused language in clinical settings is essential to supervision of student occupational therapists since training is based, at least in part, on the competencies described in The Profile of Occupational Therapy Practice in Canada (Canadian Association of Occupational Therapists, 2007). PURPOSE: This article describes how occupational therapists conceptualize the competencies related to the role of "expert in enabling occupation." METHODS: Qualitative data collected from 56 occupational therapists across eight focus groups were categorized using content analysis through a process of constant comparison. FINDINGS: Although the use of occupation-focused language is not widespread, the examples reported in the present study reflect occupation-focused client-centred practice. IMPLICATIONS. The use of occupation-focused language associated with the role of "expert in enabling occupation" can be fostered through discussion groups in the context of academic and clinical setting collaborations.


Assuntos
Terapia Ocupacional/psicologia , Competência Profissional , Papel Profissional/psicologia , Terminologia como Assunto , Grupos Focais , Humanos , Assistência Centrada no Paciente , Pesquisa Qualitativa
19.
Autism Dev Lang Impair ; 8: 23969415231152094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762259

RESUMO

Background & aims: Youth with developmental language disorder (DLD) are at risk of experiencing challenges during their job search. It is thus crucial to promote efficient job search behaviors in terms of effort, intensity, and self-regulation. Based on self-determination theory (SDT), we verified the role of autonomous and controlled motivations in enhancing these behaviors. Methods: Study 1 included 37 young adults with DLD who have finished school, and Study 2 included 52 youth with DLD transitioning from school to work. They completed a questionnaire examining their job search behaviors and their motivation toward their job search. Results: Autonomous motivation positively predicted job search effort, intensity, and self-regulation. Small to moderate relations were observed in Study 1, and moderate to strong ones in Study 2. Controlled motivation was unrelated to the three behaviors. Conclusions: In line with SDT, autonomous motivation is an important foundation for positive job search behaviors among youth with DLD. Implications: Supporting the development of autonomous motivation is thus encouraged in transition services for this population.

20.
Methods Mol Biol ; 2561: 63-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399265

RESUMO

In this protocol, we describe the specific steps required to prepare human postmortem brain samples for ultrastructural microglial analysis. A detailed procedure is provided to improve the ultrastructural quality of the samples, using aldehyde fixatives followed by immunoperoxidase staining of allograft inflammatory factor 1 (AIF1, also known as IBA1), a marker of myeloid cells, and cluster of differentiation 68 (CD68), a marker of phagolysosomal activity. Additionally, we describe an osmium-thiocarbohydrazide-osmium (OTO) post-fixation method that preserves and increases the contrast of cellular membranes in human postmortem brain samples, as well as the steps necessary to acquire scanning electron microscopy (SEM) images of microglial cell bodies. In the last section, we cover the quantitative analysis of various microglial cytoplasmic organelles and their interactions with other parenchymal elements.


Assuntos
Encéfalo , Microglia , Humanos , Microglia/ultraestrutura , Microscopia Eletrônica de Varredura , Autopsia , Fixadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA