Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 61(4): 575-588, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26895426

RESUMO

Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Domínio Catalítico , Ciclo Celular , Cromatina/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
2.
J Struct Biol ; 203(2): 71-80, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545204

RESUMO

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Assuntos
Baculoviridae/genética , Vetores Genéticos/genética , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Recombinantes/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células Sf9
3.
Proc Natl Acad Sci U S A ; 112(5): 1505-10, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605945

RESUMO

MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2K(b) in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2K(b)-peptide complexes suggest that a conformational adaptation of H-2K(b) drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Entropia , Cinética , Peptídeos/imunologia
4.
J Struct Biol ; 175(2): 113-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21453775

RESUMO

High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.


Assuntos
Clonagem Molecular/métodos , Endopeptidases/genética , Vetores Genéticos , Proteínas Recombinantes/genética , Animais , Automação Laboratorial , Baculoviridae , Sequência de Bases , Linhagem Celular , Endopeptidases/metabolismo , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA