Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemistry ; 30(2): e202303191, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37906675

RESUMO

The construction of molecular photogears that can achieve through-space transmission of the unidirectional double-bond rotary motion of light-driven molecular motors onto a remote single-bond axis is a formidable challenge in the field of artificial molecular machines. Here, we present a proof-of-principle design of such photogears that is based on the possibility of using stereogenic substituents to control both the relative stabilities of two helical forms of the photogear and the double-bond photoisomerization reaction that connects them. The potential of the design was verified by quantum-chemical modeling through which photogearing was found to be a favorable process compared to free-standing single-bond rotation ("slippage"). Overall, our study unveils a surprisingly simple approach to realizing unidirectional photogearing.

2.
Phys Chem Chem Phys ; 26(15): 11295-11305, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529645

RESUMO

Photochemical reactions enabling efficient transformation of aromatic systems into energetic but stable non-aromatic isomers have a long history in organic chemistry. One recently discovered reaction in this realm is that where derivatives of 1,2-azaborine, a compound isoelectronic with benzene in which two adjacent C atoms are replaced by B and N atoms, form the non-hexagon Dewar isomer. Here, we report quantum-chemical calculations that explain both why 1,2-azaborine is intrinsically more reactive toward Dewar formation than benzene, and how suitable substitutions at the B and N atoms are able to increase the corresponding quantum yield. We find that Dewar formation from 1,2-azaborine is favored by a pronounced driving force that benzene lacks, and that a large improvement in quantum yield arises when the reaction of substituted 1,2-azaborines proceeds without involvement of an intermediary ground-state species. Overall, we report new insights into making photochemical use of the Dewar isomers of aromatic compounds.

3.
Phys Chem Chem Phys ; 19(5): 4078-4084, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111670

RESUMO

Polaron dynamics in anisotropic organic molecular semiconductors is theoretically investigated and simulated in the framework of a semi-classical Holstein-Peierls model. Our computational protocol is presented and applied to studies of a two-dimensional molecular crystal. The intermolecular (Peierls) parameters for a particular crystal direction are systematically changed in order to study the effect of anisotropy in the system. The usefulness of this methodology is highlighted by studying the polaron dynamics on a picosecond timescale, which provides a microscopic insight into the influence of the interplay between different intramolecular parameters on the charge transport mechanism. Our results show that the polaron mobility is substantially reduced in going from an anisotropic to an isotropic relationship between the Peierls parameters for different directions in the crystal. Interestingly, the molecular charge distribution presents three different signatures corresponding to a one-dimensional polaron, a two-dimensional polaron, and an intermediate state for which the polaron localization depends on the degree of anisotropy. Importantly, the two-dimensional polaron, which is present in the essentially isotropic system, is immobile whereas the other two types of polarons are mobile. This, in order for polaron transport to occur in a two-dimensional molecular based system, this system has to be anisotropic.

4.
Phys Chem Chem Phys ; 18(3): 1386-91, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26674995

RESUMO

The influence of the interplay between symmetric and antisymmetric inter-molecular electron-phonon (e-ph) coupling mechanisms on the polaron stability and mobility in organic semiconductors has been theoretically investigated at a molecular level. A semi-empirical Holstein-Peierls model is used which in addition to the symmetric and antisymmetric inter-molecular e-ph interactions also includes an antisymmetric intra-molecular e-ph coupling. Our results show that the symmetric e-ph coupling plays the role of destabilizing the polaron as a result of temperature induced phonons that, via the symmetric coupling, affects the charge distribution of the polaron. Considering this kind of coupling, the parameter space for which the polaron is dynamically stable is strongly temperature-dependent. For the combination of symmetric e-ph coupling strength and temperature, which results in a stable polaron, the velocity of the polaron, and therefore also the charge carrier mobility, is not affected by the symmetric e-ph coupling strength.

5.
Phys Chem Chem Phys ; 17(14): 8973-82, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25746667

RESUMO

A semi-empirical Holstein-Peierls model is used to study the temperature effects on the polaron stability in organic semiconductors at a molecular scale. The approach takes into account both intra- and inter-molecular electron-lattice interactions and is aimed at describing charge transport in the system. Particularly, we present a systematic numerical investigation to characterize the influence of both temperature and electric field on the stability as well as mobility of the polaron. It is found that the parameter space for which the polaron is dynamically stable is quite limited and the variations in some of these parameters strongly depend on the temperature. The electric field can play a role in further localizing the charge causing a compression of the lattice distortions associated with the polaron, increasing thereby its stability, up to a field strength of approximately 2.0 mV Å(-1). Considering field strengths higher than this critical value, the polaron is annihilated spreading charge through the lattice. Furthermore, we have studied the polaron mobility as a function of the anisotropy of the system, going from a one-dimensional system via a highly anisotropic two-dimensional system to a uniform two-dimensional system. There is a clearly observed mobility edge for the polaron; it exhibits a high mobility in the one-dimensional system but as the coupling in the second dimension is turned on the polaron slows down and becomes immobile in the uniform system. The results provided by this transport mechanism are in good agreement with experimental observations and may provide guidance to improve the charge transport in organic optoelectronic devices.

6.
J Chem Phys ; 142(9): 094503, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25747090

RESUMO

In this article, we analyze the electric field dependence of the hole mobility in disordered poly(p-phenylene vinylene). The charge carrier mobility is obtained from Monte Carlo simulations. Depending on the field strength three regions can be identified: the percolation region, the correlation region, and the inverted region. Each region is characterized by a different conduction mechanism and thus a different functional dependence of the mobility on the electric field. Earlier studies have highlighted that Poole-Frenkel law, which appears in the correlation region, is based on the type of correlation caused by randomly distributed electric dipoles. This behavior is thus observed in a limited range of field strengths, and by studying a broader range of electric fields, a more fundamental understanding of the transport mechanism is obtained. We identify the electric fields determining the transitions between the different conduction mechanisms in the material and we explain their physical origin. In principle, this allows us to characterize the mobility field dependence for any organic material. Additionally, we study the charge carrier trapping mechanisms due to diagonal and off-diagonal disorder, respectively.

7.
Chemphyschem ; 15(13): 2851-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044659

RESUMO

The adsorption of organic molecules onto the close-packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X-ray standing wave absorption and a state-of-the-art semi-empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.

8.
J Am Chem Soc ; 135(15): 5768-75, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23506285

RESUMO

We computationally study the reaction mechanisms of halogen-based covalent self-assembly, a major route for synthesizing molecular nanostructures and nanographenes on surfaces. Focusing on biphenyl as a small model system, we describe the dehalogenation, recombination, and diffusion processes. The kinetics of the different processes are also investigated, in particular how diffusion and coupling barriers affect recombination rates. Trends across the periodic table are derived from three commonly used close-packed (111) surfaces (Cu, Ag, and Au) and two halogens (Br and I). We show that the halogen atoms can poison the surface, thus hindering long-range ordering of the self-assembled structures. Finally, we present core-level shifts of the relevant carbon and halogen atoms, to provide reference data for reliably detecting self-assembly without the need for atomic-resolution scanning tunneling microscopy.

9.
J Chem Phys ; 138(16): 164905, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635169

RESUMO

Exciton dissociation in a donor-accepter polymer heterojunction has been simulated using a nonadiabatic molecular dynamics approach, which allows for the coupled evolution of the nuclear degrees of freedom and the electronic degrees of freedom described by multiconfigurational electronic wavefunctions. The simulations reveal important details of the charge separation process: the exciton in the donor polymer first dissociates into a "hot" charge transfer state, which is best described as a polaron pair. The polaron pair can be separated into free polaron charge carriers if a sufficiently strong external electric field is applied. We have also studied the effects of inter-chain interaction, temperature, and the external electric field strength. Increasing inter-chain interactions makes it easier for the exciton to dissociate into a polaron pair state, but more difficult for the polaron pair to dissociate into free charge carriers. Higher temperature and higher electric field strength both favor exciton dissociation as well as the formation of free charge carriers.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química
10.
J Chem Phys ; 136(24): 244901, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22755597

RESUMO

We simulate the interchain polaron recombination process in conjugated polymer systems using a nonadiabatic molecular dynamics method, which allows for the coupled evolution of the nuclear degrees of freedom and multiconfigurational electronic wavefunctions. Within the method, the appropriate spin symmetry of the electronic wavefunction is taken into account, thus allowing us to distinguish between singlet and triplet excited states. It is found that the incident polarons can form an exciton, form a bound interchain polaron pair, or pass each other, depending on the interchain interaction strength and the strength of an external electric field. Most importantly, we found that the formation of singlet excitons is considerably easier than triplet excitons. This shows that in real organic light emitting devices, the electroluminescence quantum efficiency can exceed the statistical limitation value of 25%, in agreement with experiments.

11.
J Chem Phys ; 137(11): 114901, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998284

RESUMO

In this work, a novel method to model off-diagonal disorder in organic materials has been developed. The off-diagonal disorder is taken directly from the geometry of the system, which includes both a distance and an orientational dependence on the constituent molecules, and does not rely on a parametric random distribution. The geometry of the system is generated by running molecular dynamics simulations on phenylene-vinylene oligomers packed into boxes. The effect of the kind of randomness generated in this way is then investigated by means of Monte Carlo simulations of the charge transport in these boxes and a comparison is made to the commonly used model of off-diagonal disorder, where only the distance dependence is accounted for. It is shown that this new refined way of treating the disorder has a significant impact on the charge transport, while still being compliant with previously published and confirmed results.


Assuntos
Método de Monte Carlo , Polímeros/química , Modelos Moleculares , Simulação de Dinâmica Molecular
12.
J Am Chem Soc ; 133(38): 14884-7, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21859135

RESUMO

We investigate the cooperative effects controlling the synthesis of a graphene nanoribbon on the Au(111) surface starting from an anthracene polymer using density functional calculations including van der Waals interactions. We focus on the high-temperature cyclodehydrogenation step of the reaction and find that the reaction proceeds by simultaneously transferring two H-atoms from the anthracene units to the Au surface, leaving behind a C-C bond in the process. This step is significantly more favorable than the three other potential reaction paths. Moreover, we find that successive dehydrogenations proceed from one end of the polyanthracene and propagate step-by-step through the polymer in a domino-like fashion.

13.
J Chem Phys ; 135(13): 134902, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21992338

RESUMO

Charge transport in conjugated polymers has been investigated using Monte Carlo simulations implemented on top of the Marcus theory for donor-acceptor transition rates. In particular, polaron effects and the dependency of the mobility on the temperature and the applied electric field have been studied. The conclusions are that while the qualitative temperature dependence is similar to that predicted by Miller-Abrahams theory in the Gaussian disorder model (GDM), the electric field dependence is characterized by a crossover into the Marcus inverted region, not present in the GDM. Furthermore, available analytical approximations to describe the electric field dependence of the mobility in Marcus theory fail to fit the simulation data and hence cannot be used to directly draw conclusions about the importance of polaron effects for charge transport in conjugated polymers.

14.
J Chem Phys ; 135(7): 074902, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21861583

RESUMO

By using the Su-Schrieffer-Heeger model modified to include electron-electron interactions, the Brazovskii-Kirova symmetry breaking term and an external electric field, we investigate the scattering process between a negative and a positive bipolaron in a system composed of two coupled polymer chains. Our results show that the Coulomb interactions do not favor the bipolaron recombination. In the region of weak Coulomb interactions, the two bipolarons recombine into a localized excited state, while in the region of strong Coulomb interactions they can not recombine. Our calculations show that there are mainly four channels for the bipolaron recombination reaction: (1) forming a biexciton, (2) forming an excited negative polaron and a free hole, (3) forming an excited positive polaron and a free electron, (4) forming an exciton, a free electron, and a free hole. The yields for the four channels are also calculated.

15.
J Chem Phys ; 134(4): 044906, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280797

RESUMO

Scattering process between a negative polaron and an exciton in a polymer chain is investigated by using the Su-Schrieffer-Heeger model modified to include electron-electron interactions, the Brazovskii-Kirova symmetry breaking term, and an external electric field. It is found that the scattering process is spin dependent. If the polaron and the exciton have parallel spins, the polaron can easily pass through the exciton as if it "do not see" the exciton. If the polaron and the exciton have antiparallel spins, there exist strong repulsion between them. The polaron may be bounced back, be dissociated or pass through the exciton depending on the strength of the external electric field. In any of these cases, the polaron cannot break the exciton.

16.
Chem Soc Rev ; 39(7): 2484-99, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20520911

RESUMO

This tutorial review describes an atomistic simulation approach to studies of dynamics of charge transport in pi-conjugated molecular or polymer based materials. The approach, which is termed electron-lattice dynamics, is based on the Ehrenfest theorem and includes nonadiabatic transport processes. The equations of motion for both the electrons and the nuclei are solved simultaneously using a Runge-Kutta method. We show that for ideal systems without disorder and thermal fluctuations in the electronic coupling between the constituent elements that the electron transport can be described as an adiabatic polaron drift process. In the presence of thermal fluctuations caused by, e.g., phenyl ring torsions along a poly(paraphenylene vinylene) chain, there are extensive variations in the electronic coupling along the polymer chain which results in nonadiabatic hopping transport.

17.
J Am Chem Soc ; 132(27): 9350-62, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20560581

RESUMO

A synthetic strategy was developed for the preparation of porphyrins containing between one and four stereogenic centers, such that their molecular weights vary only as a result of methyl groups which give the chiral forms. The low-dimensional nanoscale aggregates of these compounds reveal the profound effects of this varying molecular chirality on their supramolecular structure and optical activity. The number of stereogenic centers influences significantly the self-assembly and chiral structure of the aggregates of porphyrin molecules described here. A scanning tunneling microscopy study of monolayers on graphite shows that the degree of structural chirality with respect to the surface increases almost linearly with the number of stereogenic centers, and only one handedness is formed in the monolayers, whereas the achiral compound forms a mixture of mirror-image domains at the surface. In solution, four hydrogen bonds induce the formation of an H-aggregate, and circular dichroism measurements and theoretical studies indicate that the compounds self-assemble into helical structures. Both the chirality and stability of the aggregates depend critically on the number of stereocenters. The chiral porphyrin derivatives gelate methylcyclohexane at concentrations dependent on the number and position of chiral groups at the periphery of the aromatic core, reflecting the different aggregation forces of the molecules in solution. Increasing the number of stereogenic centers requires more material to immobilize the solvent, in all likelihood because of the greater solubility of the porphyrins. The vibrational circular dichroism spectra of the gels show that all compounds have a chiral environment around the amide bonds, confirming the helical model proposed by calculations. The morphologies of the xerogels (studied by scanning electron microscopy and scanning force microscopy) are similar, although more fibrous features are present in the molecules with fewer stereogenic centers. Importantly, the presence of only one stereogenic center, bearing a methyl group as the desymmetrizing ligand, in a molecule of considerable molecular weight is enough to induce single-handed chirality in both the one- and two-dimensional supramolecular self-assembled structures.

18.
Nanotechnology ; 20(27): 275602, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19531869

RESUMO

A molecular model system of tetraphenyl porphyrins (TPP) adsorbed on metallic substrates is systematically investigated within a joint scanning tunnelling microscopy/molecular modelling approach. The molecular conformation of TPP molecules, their adsorption on a gold surface and the growth of highly ordered TPP islands are modelled with a combination of density functional theory and dynamic force field methods. The results indicate a subtle interplay between different contributions. The molecule-substrate interaction causes a bending of the porphyrin core which also determines the relative orientations of phenyl legs attached to the core. A major consequence of this is a characteristic (and energetically most favourable) arrangement of molecules within self-assembled molecular clusters; the phenyl legs of adjacent molecules are not aligned parallel to each other (often denoted as pi-pi stacking) but perpendicularly in a T-shaped arrangement. The results of the simulations are fully consistent with the scanning tunnelling microscopy observations, in terms of the symmetries of individual molecules, orientation and relative alignment of molecules in the self-assembled clusters.


Assuntos
Cobre/química , Ouro/química , Porfirinas/química , Adsorção , Cobalto/química , Simulação por Computador , Gases/química , Cinética , Microscopia de Tunelamento , Modelos Moleculares , Conformação Molecular , Nanotecnologia/métodos , Propriedades de Superfície , Termodinâmica
19.
J Chem Phys ; 131(15): 155102, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20568885

RESUMO

We have performed a study of charge transport in lambda-DNA using a recently developed model based on Marcus theory and dynamic Monte Carlo simulations. The model accounts for charge delocalization over multiple adjacent identical nucleobases. Such delocalized states are found to act as traps for charge transport and therefore have a negative impact on the charge carrier (hole) mobility. Both the electric field and temperature dependence of the mobility in lambda-DNA is reported in this paper. Furthermore, the detailed information produced by the simulation allow us to plot the progress of a hole propagating through the DNA sequence and this is used to identify the bottlenecks that limits the charge transport process.


Assuntos
DNA/química , Método de Monte Carlo , Conformação de Ácido Nucleico
20.
J Chem Phys ; 130(10): 104305, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19292532

RESUMO

X-ray absorption spectra have been determined for ethylene and free base phthalocyanine at the carbon K-edge with use of the complex polarization propagator method combined with Kohn-Sham density functional theory and the Coulomb attenuated method B3LYP exchange-correlation functional. Apart from isolated molecules, the study includes pi-stacked systems of the phthalocyanine dimer and the ethylene dimer, trimer, tetramer, and pentamer. For ethylene, pi-stacking involves a reduction in transition energy of the valence pi( *)-band by some 70 meV and large spectral changes (regarding also shape and intensity) of the Rydberg bands. For phthalocyanine, there are large spectral changes in the entire valence pi( *)-part of the spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA