Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 143(7): 2741-2750, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33399469

RESUMO

Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts in alkaline media, despite the elusive nature of their active sites. Here, we demonstrate that the origin of the OER activity in a La1-xSrxCoO3 model perovskite arises from a thin surface layer of Co hydr(oxy)oxide (CoOxHy) that interacts with trace-level Fe species present in the electrolyte, creating dynamically stable active sites. Generation of the hydr(oxy)oxide layer is a consequence of a surface evolution process driven by the A-site dissolution and O-vacancy creation. In turn, this imparts a 10-fold improvement in stability against Co dissolution and a 3-fold increase in the activity-stability factor for CoOxHy/LSCO when compared to nanoscale Co-hydr(oxy)oxides clusters. Our results suggest new design rules for active and stable perovskite oxide-based OER materials.

3.
Nat Mater ; 19(11): 1207-1214, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32690912

RESUMO

A remaining challenge for the deployment of proton-exchange membrane fuel cells is the limited durability of platinum (Pt) nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single-crystalline, thin-film and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt nanoparticles in a carbon (C) support. It was found that the utilization of a gold (Au) underlayer promotes ordering of Pt surface atoms towards a (111) structure, whereas Au on the surface selectively protects low-coordinated Pt sites. This mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles and resulted in the elimination of Pt dissolution in the liquid electrolyte, which included a 30-fold durability improvement versus 3 nm Pt/C over an extended potential range up to 1.2 V.

4.
J Am Chem Soc ; 139(34): 11678-11681, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28787139

RESUMO

Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive element, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed ∼10 times higher specific and ∼6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.

5.
J Am Chem Soc ; 139(15): 5494-5502, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28343390

RESUMO

The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.

6.
Nat Mater ; 16(1): 57-69, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27994237

RESUMO

Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

7.
Nat Mater ; 15(2): 197-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26618882

RESUMO

Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co(2+) and Mo(4+) centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.

8.
J Am Chem Soc ; 137(50): 15817-24, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26652294

RESUMO

Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

9.
Nano Lett ; 14(11): 6361-7, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25299322

RESUMO

The fine balance between activity and durability is crucial for the development of high performance electrocatalysts. The importance of atomic structure and compositional gradients is a guiding principle in exploiting the knowledge from well-defined materials in the design of novel class of core-shell electrocatalysts comprising Ni core, Au interlayer, and PtNi shell (Ni@Au@PtNi). This multimetallic system is found to have the optimal balance of activity and durability due to the synergy between the stabilizing effect of subsurface Au and modified electronic structure of surface Pt through interaction with subsurface Ni atoms. The electrocatalysts with Ni@Au@PtNi core-interlayer-shell structure exhibit high intrinsic and mass activities as well as superior durability for the oxygen reduction reaction with less than 10% activity loss after 10,000 potential cycles between 0.6 and 1.1 V vs the reversible hydrogen electrode.

10.
Faraday Discuss ; 176: 125-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25490237

RESUMO

Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity-stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO(3) thin films in alkaline solutions. We propose that the electrochemical transformation of either water (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state (n) of Ru: from stable but inactive Ru(4+) to unstable but active Ru(n>4+). We conclude that if the oxide is stable then it is completely inactive for the OER. A practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.

11.
Angew Chem Int Ed Engl ; 53(51): 14016-21, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25297010

RESUMO

The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity of surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.

12.
Nat Mater ; 11(12): 1051-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142838

RESUMO

Among the most challenging issues in technologies for electrochemical energy conversion are the insufficient activity of the catalysts for the oxygen reduction reaction, catalyst degradation and carbon-support corrosion. In an effort to address these barriers, we aimed towards carbon-free multi/bimetallic materials in the form of mesostructured thin films with tailored physical properties. We present here a new class of metallic materials with tunable near-surface composition, morphology and structure that have led to greatly improved affinity for the electrochemical reduction of oxygen. The level of activity for the oxygen reduction reaction established on mesostructured thin-film catalysts exceeds the highest value reported for bulk polycrystalline Pt bimetallic alloys, and is 20-fold more active than the present state-of-the-art Pt/C nanoscale catalyst.

13.
Phys Chem Chem Phys ; 15(43): 19019-23, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24097254

RESUMO

We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz(2) orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer.

14.
ACS Catal ; 13(22): 14874-14893, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026811

RESUMO

In pursuit of higher activity and stability of electrocatalysts toward the oxygen reduction reaction, it has become standard practice to alloy platinum in various structural configurations. Transition metals have been extensively studied for their ability to tune catalyst functionality through strain, ligand, and ensemble effects. The origin of these effects and potential for synergistic application in practical materials have been the subject of many theoretical and experimental analyses in recent years. Here, a comprehensive overview of these phenomena is provided regarding the impact on reaction mechanisms and kinetics through combined experimental and theoretical approaches. Experimental approaches to electrocatalysis are discussed.

15.
Nano Lett ; 11(4): 1614-7, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21355537

RESUMO

Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.


Assuntos
Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Paládio/química , Tensoativos/química , Simulação por Computador , Cristalização/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Nano Lett ; 11(3): 919-26, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20704335

RESUMO

We report the design and synthesis of multimetallic Au/Pt-bimetallic nanoparticles as a highly durable electrocatalyst for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. This system was first studied on well-defined Pt and FePt thin films deposited on a Au(111) surface, which has guided the development of novel synthetic routes toward shape-controlled Au nanoparticles coated with a Pt-bimetallic alloy. It has been demonstrated that these multimetallic Au/FePt(3) nanoparticles possess both the high catalytic activity of Pt-bimetallic alloys and the superior durability of the tailored morphology and composition profile, with mass-activity enhancement of more than 1 order of magnitude over Pt catalysts. The reported synergy between well-defined surfaces and nanoparticle synthesis offers a persuasive approach toward advanced functional nanomaterials.

17.
J Am Chem Soc ; 133(36): 14396-403, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21770417

RESUMO

Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

18.
Nat Mater ; 9(12): 998-1003, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21037564

RESUMO

The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V (ref. 11). Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

19.
ACS Appl Mater Interfaces ; 13(2): 3369-3376, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404211

RESUMO

The feasible commercialization of alkaline, phosphoric acid and polymer electrolyte membrane fuel cells depends on the development of oxygen reduction reaction (ORR) electrocatalysts with improved activity, stability, and selectivity. The rational design of surfaces to ensure these improved ORR catalytic requirements relies on the so-called "descriptors" (e.g., the role of covalent and noncovalent interactions on platinum surface active sites for ORR). Here, we demonstrate that through the molecular adsorption of melamine onto the Pt(111) surface [Pt(111)-Mad], the activity can be improved by a factor of 20 compared to bare Pt(111) for the ORR in a strongly adsorbing sulfuric acid solution. The Mad moieties act as "surface-blocking bodies," selectively hindering the adsorption of (bi)sulfate anions (well-known poisoning spectator of the Pt(111) active sites) while the ORR is unhindered. This modified surface is further demonstrated to exhibit improved chemical stability relative to Pt(111) patterned with cyanide species (CNad), previously shown by our group to have a similar ORR activity increase compared to bare Pt(111) in a sulfuric acid electrolyte, with Pt(111)-Mad retaining a greater than ninefold higher ORR activity relative to bare Pt(111) after extensive potential cycling as compared to a greater than threefold higher activity retained on a CNad-covered Pt(111) surface. We suggest that the higher stability of the Pt(111)-Mad interface stems from melamine's ability to form intermolecular hydrogen bonds, which effectively turns the melamine molecules into larger macromolecular entities with multiple anchoring sites and thus more difficult to remove.

20.
J Am Chem Soc ; 132(18): 6524-9, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20397665

RESUMO

Rational synthesis of Pt-Au(n) nanoparticles (NPs) has been achieved by overgrowing Au on Pt with n, the number of Pt-Au heterojunctions in each particle, controlled from 1 to 4, and the corresponding NPs in pear-, peanut-, or clover-like morphology. Monte Carlo simulation reveals that the morphology control can be correlated to a thermodynamic equilibrium of the Au coherence energy, the overall particle surface energy, and the heterogeneous Pt-Au interfacial energy in the composite system, which is manipulated by the seeding particle size and solvent polarity. The developed synthetic strategy together with the provided fundamental understanding of heterogeneous nucleation and heterostructure growth could have great potential toward the rational synthesis of composite nanomaterials with morphology control for advanced catalytic and other functional applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Platina/química , Catálise , Eletroquímica , Análise de Fourier , Metanol/química , Microscopia Eletrônica de Transmissão , Método de Monte Carlo , Oxirredução , Tamanho da Partícula , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA