RESUMO
BACKGROUND: Respiratory viral infection causes chronic obstructive pulmonary disease (COPD) exacerbations. We previously reported increased bronchial mucosa eosinophil and neutrophil inflammation in patients with COPD experiencing naturally occurring exacerbations. But it is unclear whether virus per se induces bronchial mucosal inflammation, nor whether this relates to exacerbation severity. OBJECTIVES: We sought to determine the extent and nature of bronchial mucosal inflammation following experimental rhinovirus (RV)-16-induced COPD exacerbations and its relationship to disease severity. METHODS: Bronchial mucosal inflammatory cell phenotypes were determined at preinfection baseline and following experimental RV infection in 17 Global Initiative for Chronic Obstructive Lung Disease stage II subjects with COPD and as controls 20 smokers and 11 nonsmokers with normal lung function. No subject had a history of asthma/allergic rhinitis: all had negative results for aeroallergen skin prick tests. RESULTS: RV infection increased the numbers of bronchial mucosal eosinophils and neutrophils only in COPD and CD8+ T lymphocytes in patients with COPD and nonsmokers. Monocytes/macrophages, CD4+ T lymphocytes, and CD20+ B lymphocytes were increased in all subjects. At baseline, compared with nonsmokers, subjects with COPD and smokers had increased numbers of bronchial mucosal monocytes/macrophages and CD8+ T lymphocytes but fewer numbers of CD4+ T lymphocytes and CD20+ B lymphocytes. The virus-induced inflammatory cells in patients with COPD were positively associated with virus load, illness severity, and reductions in lung function. CONCLUSIONS: Experimental RV infection induces bronchial mucosal eosinophilia and neutrophilia only in patients with COPD and monocytes/macrophages and lymphocytes in both patients with COPD and control subjects. The virus-induced inflammatory cell phenotypes observed in COPD positively related to virus load and illness severity. Antiviral/anti-inflammatory therapies could attenuate bronchial inflammation and ameliorate virus-induced COPD exacerbations.
Assuntos
Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/complicações , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Rhinovirus , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Eosinófilos , Feminino , Humanos , Mediadores da Inflamação , Contagem de Leucócitos , Masculino , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Índice de Gravidade de Doença , Escarro/citologia , Escarro/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: The innate immune system senses viral infection through pattern recognition receptors (PRRs), leading to type I interferon production. The role of type I interferon and PPRs in rhinovirus-induced asthma exacerbations in vivo are uncertain. OBJECTIVES: We sought to compare bronchial mucosal type I interferon and PRR expression at baseline and after rhinovirus infection in atopic asthmatic patients and control subjects. METHODS: Immunohistochemistry was used to detect expression of IFN-α, IFN-ß, and the PRRs: Toll-like receptor 3, melanoma differentiation-associated gene 5, and retinoic acid-inducible protein I in bronchial biopsy specimens from 10 atopic asthmatic patients and 15 nonasthmatic nonatopic control subjects at baseline and on day 4 and 6 weeks after rhinovirus infection. RESULTS: We observed IFN-α/ß deficiency in the bronchial epithelium at 3 time points in asthmatic patients in vivo. Lower epithelial IFN-α/ß expression was related to greater viral load, worse airway symptoms, airway hyperresponsiveness, and reductions in lung function during rhinovirus infection. We found lower frequencies of bronchial subepithelial monocytes/macrophages expressing IFN-α/ß in asthmatic patients during infection. Interferon deficiency at baseline was not accompanied by deficient PRR expression in asthmatic patients. Both epithelial and subepithelial PRR expression were induced during rhinovirus infection. Rhinovirus infection-increased numbers of subepithelial interferon/PRR-expressing inflammatory cells were related to greater viral load, airway hyperresponsiveness, and reductions in lung function. CONCLUSIONS: Bronchial epithelial IFN-α/ß expression and numbers of subepithelial IFN-α/ß-expressing monocytes/macrophages during infection were both deficient in asthmatic patients. Lower epithelial IFN-α/ß expression was associated with adverse clinical outcomes after rhinovirus infection in vivo. Increases in numbers of subepithelial cells expressing interferon/PRRs during infection were also related to greater viral load/illness severity.
Assuntos
Asma/imunologia , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica/imunologia , Helicase IFIH1 Induzida por Interferon/biossíntese , Interferon-alfa/imunologia , Interferon beta/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Receptor 3 Toll-Like/imunologia , Adulto , Asma/metabolismo , Asma/patologia , Biópsia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Proteína DEAD-box 58/biossíntese , Feminino , Humanos , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Masculino , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/patologia , Receptores Imunológicos , Rhinovirus/metabolismo , Índice de Gravidade de Doença , Receptor 3 Toll-Like/biossínteseRESUMO
Vitamin D, in addition to its classical functions in bone homeostasis, has a modulatory and regulatory role in multiple processes, including host defense, inflammation, immunity, and epithelial repair. Patients with respiratory disease are frequently deficient in vitamin D, implying that supplementation might provide significant benefit to these patients. Respiratory viral infections are common and are the main trigger of acute exacerbations and hospitalization in children and adults with asthma and other airways diseases. Respiratory monocytes/macrophages and epithelial cells constitutively express the vitamin D receptor. Vitamin D, acting through this receptor, may be important in protection against respiratory infections. Whether the in vitro findings can be translated into a substantial in vivo benefit still remains uncertain. Here we review the in vitro data on the role of vitamin D in antiviral innate immunity, the data concerning the deficient levels of vitamin D in lung diseases, and the in vivo role of supplementation as protection against respiratory viral infections in healthy individuals and in patients with chronic respiratory diseases. Finally, we suggest ways of improving the effectiveness of vitamin D as an adjuvant in the prevention and treatment of acute respiratory infections.
Assuntos
Imunidade Inata , Infecções Respiratórias/imunologia , Viroses/imunologia , Vitamina D/metabolismo , Humanos , Fatores Imunológicos/metabolismoRESUMO
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Assuntos
Asma/imunologia , Interferons/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Animais , Asma/virologia , Humanos , Viroses/imunologia , Viroses/virologia , Vírus/genética , Vírus/imunologiaRESUMO
RATIONALE: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell-derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. OBJECTIVES: To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. METHODS: We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirus-infected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. MEASUREMENTS AND MAIN RESULTS: IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. CONCLUSIONS: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33-responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbations.
Assuntos
Asma/etiologia , Inflamação/etiologia , Interleucinas/fisiologia , Infecções por Picornaviridae/complicações , Adulto , Asma/fisiopatologia , Asma/virologia , Células Cultivadas , Feminino , Humanos , Inflamação/fisiopatologia , Interleucina-13/fisiologia , Interleucina-33 , Interleucina-4/fisiologia , Interleucina-5/fisiologia , Subpopulações de Linfócitos/fisiologia , Masculino , Infecções por Picornaviridae/fisiopatologia , Rhinovirus , Índice de Gravidade de Doença , Linfócitos T/fisiologia , Células Th2/fisiologia , Carga ViralRESUMO
BACKGROUND: Although inhaled glucocorticoids are the mainstays of asthma treatment, they are poorly effective at treating and preventing virus-induced asthma exacerbations. The major viruses precipitating asthma exacerbations are rhinoviruses. OBJECTIVE: We sought to evaluate whether rhinovirus infection interferes with the mechanisms of action of glucocorticoids. METHODS: Cultured primary human bronchial or transformed (A549) respiratory epithelial cells were infected with rhinovirus 16 (RV-16) before dexamethasone exposure. Glucocorticoid receptor (GR) α nuclear translocation, glucocorticoid response element (GRE) binding, and transactivation/transrepression functional readouts were evaluated by using immunocytochemistry, Western blotting, DNA binding assays, real-time quantitative PCR, coimmunoprecipitation, and ELISA techniques. Specific inhibitors of c-Jun N-terminal kinase (JNK) and of IκB kinase (IKK) were used to investigate the involvement of intracellular signaling pathways. RESULTS: RV-16 infection impaired dexamethasone-dependent (1) inhibition of IL-1ß-induced CXCL8 release, (2) induction of mitogen-activated protein kinase phosphatase 1 gene expression, and (3) binding of GR to GREs in airway epithelial cells. This was associated with impaired GRα nuclear translocation, as assessed by means of both immunochemistry (54.0% ± 6.8% vs 24.7% ± 3.8% GR-positive nuclei after 10 nmol/L dexamethasone treatment in sham- or RV-16-infected cells, respectively; P < .01) and Western blotting. RV-16 infection induced nuclear factor κB activation and GRα phosphorylation, which were prevented by inhibitors of IKK2 and JNK, respectively. In rhinovirus-infected cells the combination of JNK and IKK2 inhibitors totally restored dexamethasone suppression of CXCL8 release, induction of mitogen-activated protein kinase phosphatase 1 gene expression, and GRα nuclear translocation. CONCLUSION: RV-16 infection of human airway epithelium induces glucocorticoid resistance. Inhibition of RV-16-induced JNK and nuclear factor κB activation fully reversed rhinovirus impairment of both GRα nuclear translocation and the transactivation/transrepression activities of glucocorticoids.
Assuntos
Resistência a Medicamentos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Infecções por Picornaviridae/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Rhinovirus , Asma/complicações , Asma/tratamento farmacológico , Asma/metabolismo , Linhagem Celular , Núcleo Celular , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Ativação Enzimática , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Interleucina-1beta/farmacologia , Interleucina-8/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Infecções por Picornaviridae/complicações , Transporte Proteico/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismoRESUMO
Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/ß interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations.
Assuntos
Asma/imunologia , Macrófagos Alveolares/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Asma/patologia , Asma/virologia , Feminino , Células HeLa , Humanos , Interferon-alfa/imunologia , Interferon beta/imunologia , Interleucina-15 , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , NF-kappa B/imunologia , Infecções por Picornaviridae/patologia , Carga Viral/imunologiaRESUMO
BACKGROUND: COPD exacerbations are associated with neutrophilic airway inflammation. Adhesion molecules on the surface of neutrophils may play a key role in their movement from blood to the airways. We analysed adhesion molecule expression on blood and sputum neutrophils from COPD subjects and non-obstructed smokers during experimental rhinovirus infections. METHODS: Blood and sputum were collected from 9 COPD subjects and 10 smoking and age-matched control subjects at baseline, and neutrophil expression of the adhesion molecules and activation markers measured using flow cytometry. The markers examined were CD62L and CD162 (mediating initial steps of neutrophil rolling and capture), CD11a and CD11b (required for firm neutrophil adhesion), CD31 and CD54 (involved in neutrophil transmigration through the endothelial monolayer) and CD63 and CD66b (neutrophil activation markers). Subjects were then experimentally infected with rhinovirus-16 and repeat samples collected for neutrophil analysis at post-infection time points. RESULTS: At baseline there were no differences in adhesion molecule expression between the COPD and non-COPD subjects. Expression of CD11a, CD31, CD62L and CD162 was reduced on sputum neutrophils compared to blood neutrophils. Following rhinovirus infection expression of CD11a expression on blood neutrophils was significantly reduced in both subject groups. CD11b, CD62L and CD162 expression was significantly reduced only in the COPD subjects. Blood neutrophil CD11b expression correlated inversely with inflammatory markers and symptom scores in COPD subjects. CONCLUSION: Following rhinovirus infection neutrophils with higher surface expression of adhesion molecules are likely preferentially recruited to the lungs. CD11b may be a key molecule involved in neutrophil trafficking in COPD exacerbations.
Assuntos
Moléculas de Adesão Celular/imunologia , Resfriado Comum/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/imunologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-lambdas by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.
Assuntos
Asma/fisiopatologia , Citocinas/biossíntese , Interleucinas/biossíntese , Infecções por Picornaviridae/complicações , Rhinovirus/metabolismo , Asma/complicações , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Humanos , Interferons , Lipopolissacarídeos/farmacologiaRESUMO
RATIONALE: Chronic obstructive pulmonary disease (COPD) exacerbations are associated with virus (mostly rhinovirus) and bacterial infections, but it is not known whether rhinovirus infections precipitate secondary bacterial infections. OBJECTIVES: To investigate relationships between rhinovirus infection and bacterial infection and the role of antimicrobial peptides in COPD exacerbations. METHODS: We infected subjects with moderate COPD and smokers and nonsmokers with normal lung function with rhinovirus. Induced sputum was collected before and repeatedly after rhinovirus infection and virus and bacterial loads measured with quantitative polymerase chain reaction and culture. The antimicrobial peptides secretory leukoprotease inhibitor (SLPI), elafin, pentraxin, LL-37, α-defensins and ß-defensin-2, and the protease neutrophil elastase were measured in sputum supernatants. MEASUREMENTS AND MAIN RESULTS: After rhinovirus infection, secondary bacterial infection was detected in 60% of subjects with COPD, 9.5% of smokers, and 10% of nonsmokers (P < 0.001). Sputum virus load peaked on Days 5-9 and bacterial load on Day 15. Sputum neutrophil elastase was significantly increased and SLPI and elafin significantly reduced after rhinovirus infection exclusively in subjects with COPD with secondary bacterial infections, and SLPI and elafin levels correlated inversely with bacterial load. CONCLUSIONS: Rhinovirus infections are frequently followed by secondary bacterial infections in COPD and cleavage of the antimicrobial peptides SLPI and elafin by virus-induced neutrophil elastase may precipitate these secondary bacterial infections. Therapy targeting neutrophil elastase or enhancing innate immunity may be useful novel therapies for prevention of secondary bacterial infections in virus-induced COPD exacerbations.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Coinfecção/etiologia , Infecções por Picornaviridae/complicações , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus , Adulto , Idoso , Análise de Variância , Infecções Bacterianas/etiologia , Infecções Bacterianas/fisiopatologia , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Estudos de Coortes , Coinfecção/fisiopatologia , Progressão da Doença , Elafina/análise , Elafina/metabolismo , Feminino , Humanos , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Infecções por Picornaviridae/fisiopatologia , Reação em Cadeia da Polimerase/métodos , Prognóstico , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Medição de Risco , Inibidor Secretado de Peptidases Leucocitárias/análise , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Componente Amiloide P Sérico/análise , Componente Amiloide P Sérico/metabolismo , Índice de Gravidade de Doença , Fumar , Escarro/citologia , Estatísticas não ParamétricasRESUMO
BACKGROUND: Schoolchildren are likely to consume meals and snacks at school, with a possibility of allergic food reactions and anaphylaxis in the school environment. The school personnel should be informed of the presence of schoolchildren with food allergy (FA) and need to be trained in the management of allergic reactions, as to prepare them to intervene appropriately when necessary. Limited knowledge of FA and its management is documented globally among school staff and there is no uniform protocol in schools. METHODS: In this observational cross-sectional study, teachers at state schools throughout Greece completed an online anonymous questionnaire on their awareness of FA reactions and the plans for the management of medical emergencies in their schools of employment. RESULTS: Among the 289 teachers who responded the online invitation, 203 (70.24%) were female and 157 (54%) were aged under 40 years. Females expressed a higher level of concern about the presence of school personnel trained to manage FA symptoms (p = 0.001), written instructions, and the availability of adrenaline (epinephrine) at school (p < 0.001). A younger age was associated with a higher level of both interest and knowledge on FA management in schools. School directors were more certain about the availability of a special record of children with FA at school (p = 0.01), the availability of adrenaline (p = 0.006), and written guidelines on the management of serious health incidents at school (p = 0.04). Written guidelines instructing children to avoid sharing cutlery, glasses, home-prepared meals, and snacks bought from the school canteen were more common in schools in urban areas (p = 0.015). Only 20% of respondents could confirm with certainty that adrenaline autoinjectors (AAIs) were available at their schools, for the purpose of administering to children in the case of a severe FA reaction. Approximately 3/4 of the participating teachers stated that completion of this questionnaire raised their awareness of the risk of FA reactions in children at school. CONCLUSIONS: This study, the first in Greece to explore the knowledge of teachers about FA in schoolchildren, revealed the following absences in many schools: a process for identifying children with FA, a written emergency treatment plan, and immediate access to emergency AAI. School FA guidelines are necessary in Greece, and training, which includes the use of AAIs, is required to prepare teachers to manage FA reactions in children at school.
RESUMO
RATIONALE: Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations. OBJECTIVES: To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations. METHODS: We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes. MEASUREMENTS AND MAIN RESULTS: Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD. CONCLUSIONS: We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.
Assuntos
Progressão da Doença , Infecções por Picornaviridae , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Carga ViralRESUMO
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis in infants. It is also responsible for high morbidity and mortality in the elderly. Programmed death ligands (PD-Ls) on antigen-presenting cells interact with receptors on T cells to regulate immune responses. The programmed death receptor-ligand 1/programmed death receptor 1 (PD-L1-PD-1) pathway is inhibitory in chronic viral infections, but its role in acute viral infections is unclear. We hypothesized that bronchial epithelial cell (BEC) expression of PD-Ls would inhibit local effector CD8(+) T cell function. We report that RSV infection of primary human BECs strongly induces PD-L1 expression. In a co-culture system of BECs with purified CD8(+) T cells, we demonstrated that RSV-infected BECs increased CD8(+) T cell activation, proliferation, and antiviral function. Blocking PD-L1 on RSV-infected BECs co-cultured with CD8(+) T cells enhanced CD8(+) T cell IFN-γ, IL-2, and granzyme B production. It also decreased the virus load of the BECs. Based on our findings, we believe therapeutic strategies that target the PD-L1-PD-1 pathway might increase antiviral immune responses to RSV and other acute virus infections.
Assuntos
Antígenos CD/biossíntese , Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/virologia , Tolerância Imunológica , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Apoptose , Antígeno B7-H1 , Células Cultivadas , Técnicas de Cocultura , HumanosRESUMO
Apart from their classical roles, both platelets and vitamin D play important roles in inflammation and infectious diseases. This study evaluated the platelet response to viral respiratory tract infection in children aged 4-16 years, 32 with influenza, 27 with non-influenza viral infection tested by nasopharyngeal swab and 21 healthy children of the same age. Blood count, including platelet count (PLT), mean platelet volume (MPV) and other platelet indices, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and vitamin D (vit D) levels were compared. The influenza group showed lower PLT and platelet mass (PLT*MPV), and the non-influenza group showed significantly lower MPV, which was correlated with the vit D levels, but not CRP or ESR, and the value vit D*MPV was significantly lower in this group. These results revealed that platelet activation in viral respiratory tract infections in children, as measured by MPV, is related to the vit D level, with differences between influenza and non-influenza infection. Conclusions: Viral respiratory tract infection in children can diminish the platelet size most likely by suppressing the platelet activation. This response is associated with low levels of vit D. Whether the vit D status is associated with the virus-platelet immune/inflammatory process needs further investigation.
RESUMO
Acute exacerbations are the major cause of asthma morbidity, mortality, and health-care costs and are difficult to treat and prevent. The majority of asthma exacerbations are associated with rhinovirus (RV) infection, but evidence supporting a causal relationship is weak and mechanisms are poorly understood. We hypothesized that in asthmatic, but not normal, subjects RV infection would induce clinical, physiologic, and pathologic lower airway responses typical of an asthma exacerbation and that these changes would be related to virus replication and impaired T helper 1 (Th1)/IL-10 or augmented Th2 immune responses. We investigated physiologic, virologic, and immunopathologic responses to experimental RV infection in blood, induced sputum, and bronchial lavage in 10 asthmatic and 15 normal volunteers. RV infection induced significantly greater lower respiratory symptoms and lung function impairment and increases in bronchial hyperreactivity and eosinophilic lower airway inflammation in asthmatic compared with normal subjects. In asthmatic, but not normal, subjects virus load was significantly related to lower respiratory symptoms, bronchial hyperreactivity, and reductions in blood total and CD8(+) lymphocytes; lung function impairment was significantly related to neutrophilic and eosinophilic lower airway inflammation. The same virologic and clinical outcomes were strongly related to deficient IFN-gamma and IL-10 responses and to augmented IL-4, IL-5, and IL-13 responses. This study demonstrates increased RV-induced clinical illness severity in asthmatic compared with normal subjects, provides evidence of strong relationships between virus load, lower airway virus-induced inflammation and asthma exacerbation severity, and indicates augmented Th2 or impaired Th1 or IL-10 immunity are likely important mechanisms.
Assuntos
Asma/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Rhinovirus/imunologia , Células Th1/imunologia , Células Th2/imunologia , Asma/metabolismo , Lavagem Broncoalveolar , Células Cultivadas , Saúde , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/fisiopatologia , Células Th1/metabolismo , Células Th2/metabolismo , Técnicas de Cultura de TecidosRESUMO
Multisystem Inflammatory Syndrome in children (MIS-C) is a rare but devastating complication of coronavirus disease 19 (COVID-19). The development of prognostic biomarkers and more importantly the implementation of new treatment modalities would have a significant impact in clinical practice regarding the outcome of MIS-C. Vitamin D could be a potential candidate. In this mini review we analyze the immunomodulatory role of vitamin D in viral infections and specifically in COVID-19. We also examine the current literature regarding the association of vitamin D with MIS-C and Kawasaki disease. The vitamin D was evaluated not only as a biomarker but also as a nutritional supplement. We concluded that vitamin D levels could be valuable in predicting severe forms of MIS-C and correction of abnormal levels in severe MIS-C may influences its evolution. 25-hydroxyvitamin D3 [25(OH)D3] supplementation raising serum [25(OH)D] concentrations potentially have a favorable effect in reducing the severity of MIS-C in certain circumstances. Further studies are needed to confirm these results.
Assuntos
COVID-19/complicações , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Vitamina D/administração & dosagem , Animais , COVID-19/sangue , COVID-19/etiologia , COVID-19/virologia , Criança , Humanos , SARS-CoV-2/fisiologia , Síndrome de Resposta Inflamatória Sistêmica/sangue , Vitamina D/sangue , Tratamento Farmacológico da COVID-19RESUMO
The aim of this study was to characterize the prevalence and seasonal variation of vitamin D (vit D) deficiency/insufficiency in healthy children and adolescents in Greece, and to explore its relationship with the use of sunscreens. The serum level of 25-hydroxy-vitamin D (25(OH)D) was measured in 376 children and adolescents (184 males and 192 females) with a mean age of 7.6 ± 4.9 years, at different time points over a period of 13 months. The prevalence of low serum 25(OH)D level, including deficiency and insufficiency, was 66.2%. The lowest mean 25(OH)D was observed in the month of January (17.9 ± 6.8 ng/mL) and the highest in September, July, August, and October (34.6 ± 8.7, 33.0 ± 9.4, 30.1 ± 8.2, and 30.1 ± 10.6 ng/mL, respectively). Higher levels of serum 25(OH)D were detected in the children to whom sunscreens had been applied on the beach (p = 0.001) or off the beach (p < 0.001). The subjects with deficiency and insufficiency were significantly older than those with normal levels of 25(OH)D, but no significant differences were demonstrated according to gender. This study emphasizes the high prevalence of low serum levels of 25(OH)D and their seasonal variation in children living in a region characterized by many hours of sunshine. Our data suggest that the real-life use of sunscreens during the summer months allows sufficient sunlight to be received to enable production of vit D at a level adequate to maintain normal serum levels. Vit D supplements should be given to children during the months of lower sun exposure.
RESUMO
This study assessed vitamin D status in asymptomatic children and adolescents in Greece, with and without atopy, and possible changes during the coronavirus disease 2019 (COVID-19) pandemic. Serum levels of 25-hydroxy-vitamin D (25(OH)D) and total immunoglobulin E (IgE), and eosinophil count were measured in 340 asymptomatic children and adolescents (155 males, 185 females), mean age 8.6 ± 4.6 years, recruited over a period of 24 months (February 2019-January 2021). Atopy, defined by high level of IgE for age, was associated with vitamin D deficient status (p = 0.041). Subjects with and without atopy showed similar rates of insufficient and normal levels of 25(OH)D. The median level of 25(OH)D was significantly higher in subjects recruited during the pandemic, when home confinement rules were observed, than before the pandemic, and significantly more children had normal levels of 25(OH)D (p < 0.001), but no differences were noticed for IgE levels or eosinophil count. These results support a link between vitamin D and allergic and infectious inflammations, and specifically the association of vitamin D deficiency with asymptomatic atopy, defined as increased IgE level for age.
RESUMO
Recurrent wheezing (RW) in infancy is one of the most frequent reasons for parents to consult health care providers and creates a significant global burden. Clinical course of RW is difficult to predict, also which infants will progress to asthma, since no valid biomarkers have been established. Identification of those infants with RW who are at risk of further recurrences and/or severe acute respiratory tract infection (ARTI) could help pediatricians to improve their therapeutic decisions. Increasing research interest is focused on the extra-skeletal actions of vitamin D (VD) and the clinical impact of VD insufficiency/deficiency. As VD deficiency could be a risk factor for causing RW in children, measurement of their serum level of 25-hydroxycholecalciferol [25(OH)D] is recommended. In the case of deficiency, VD administration is recommended in age-appropriate doses for at least 6 weeks, until achievement of normal blood 25(OH)D level, followed by supplementation as long as exposure to sun is inadequate. Higher doses of VD given in an attempt to prevent asthma development appear to be of no additional benefit. In children with severe ARTI, VD level is recommended to be assess.
RESUMO
BACKGROUND: Macrophages (MÑ) can be M1/M2 polarized by Th1/2 signals, respectively. M2-like MÑ are thought to be important in asthma pathogenesis, and M1-like in anti-infective immunity, however their roles in virus-induced asthma exacerbations are unknown. Our objectives were (i) to assess polarised MÑ phenotype responses to rhinovirus (RV) infection in vitro and (ii) to assess MÑ phenotypes in healthy subjects and people with asthma before and during experimental RV infection in vivo. METHODS: We investigated characteristics of polarized/unpolarized human monocyte-derived MÑ (MDM, from 3-6 independent donors) in vitro and evaluated frequencies of M1/M2-like bronchoalveolar lavage (BAL) MÑ in experimental RV-induced asthma exacerbation in 7 healthy controls and 17 (at baseline) and 18 (at day 4 post infection) people with asthma. FINDINGS: We observed in vitro: M1-like but not M2-like or unpolarized MDM are potent producers of type I and III interferons in response to RV infection (P<0.0001), and M1-like are more resistant to RV infection (P<0.05); compared to M1-like, M2-like MDM constitutively produced higher levels of CCL22/MDC (P = 0.007) and CCL17/TARC (P<0.0001); RV-infected M1-like MDM were characterized as CD14+CD80+CD197+ (P = 0.002 vs M2-like, P<0.0001 vs unpolarized MDM). In vivo we found reduced percentages of M1-like CD14+CD80+CD197+ BAL MÑ in asthma during experimental RV16 infection compared to baseline (P = 0.024). INTERPRETATION: Human M1-like BAL MÑ are likely important contributors to anti-viral immunity and their numbers are reduced in patients with allergic asthma during RV-induced asthma exacerbations. This mechanism may be one explanation why RV-triggered clinical and pathologic outcomes are more severe in allergic patients than in healthy subjects. FUNDING: ERC FP7 Advanced grant 233015, MRC Centre Grant G1000758, Asthma UK grant 08-048, NIHR Biomedical Research Centre funding scheme, NIHR BRC Centre grant P26095, the Predicta FP7 Collaborative Project grant 260895, RSF grant 19-15-00272, Megagrant No 14.W03.31.0024.