Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Bull Environ Contam Toxicol ; 109(6): 996-1000, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36074128

RESUMO

The toxicity of the insecticide chlorantraniliprole and its formulated product Altacor® was determined for the Cladoceran, Ceriodaphnia dubia Richard. Acute toxicity (48 h) and 21 d population studies were conducted. The hypothesis of this study was that these two compounds would have different toxicities. We conducted acute and chronic toxicity studies for each compound and compared the results to test this hypothesis. 48 h LC50s (95% CL) for chlorantraniliprole and Altacor® were 8.5 (6.6-11.5) and 6.0 (3.7-9.0) µg chlorantraniliprole/L water, respectively. Therefore, chlorantraniliprole and Altacor® were equitoxic to C. dubia at LC50 based on overlap of the 95% CL. In the population study, chlorantraniliprole and Altacor® concentrations equivalent to the acute LC5, 10, 25, and 50 for each product were evaluated on populations of C. dubia. Number of individuals after 21 d was the endpoint evaluated. T-tests conducted at each LC value indicated that there was no significant difference in population size between these two products at each LC value evaluated. Previous studies show that toxicity can vary greatly between formulated and technical grade pesticides. However, our results show that chlorantraniliprole and its formulated product, Altacor® were equally toxic to C. dubia. Therefore, making assumptions about the toxicity of formulated and unformulated products is ill advised.


Assuntos
Cladocera , Inseticidas , Poluentes Químicos da Água , Humanos , Animais , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 55(17): 11767-11774, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34410108

RESUMO

Tire tread wear particles (TWP) are increasingly recognized as a global pollutant of surface waters, but their impact on biota in receiving waters is rarely addressed. In the developed U.S. Pacific Northwest, acute mortality of adult coho salmon (Oncorhynchus kisutch) follows rain events and is correlated with roadway density. Roadway runoff experimentally triggers behavioral symptoms and associated changes in blood indicative of cardiorespiratory distress prior to death. Closely related chum salmon (O. keta) lack an equivalent response. Acute mortality of juvenile coho was recently experimentally linked to a transformation product of a tire-derived chemical. We evaluated whether TWP leachate is sufficient to trigger the acute mortality syndrome in adult coho salmon. We characterized the acute response of adult coho and chum salmon to TWP leachate (survival, behavior, blood physiology) and compared it with that caused by roadway runoff. TWP leachate was acutely lethal to coho at concentrations similar to roadway runoff, with the same behaviors and blood parameters impacted. As with runoff, chum salmon appeared insensitive to TWP leachate at concentrations lethal to coho. Our results confirm that environmentally relevant TWP exposures cause acute mortalities of a keystone aquatic species.


Assuntos
Poluentes Ambientais , Oncorhynchus keta , Oncorhynchus kisutch , Animais , Chuva , Água
3.
Ecotoxicology ; 30(9): 1922-1928, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34382175

RESUMO

The potential risk that two closely related insecticides, spinetoram and spinosad, posed to three Cladoceran species, Ceriodaphnia dubia, Daphnia pulex, and D. magna was determined using two approaches, the USEPA Risk Quotient method and the Delay in Population Growth Index (DPGI). Results of the RQ method showed that spinetoram posed a risk to all three species, but spinosad posed a risk only to C. dubia. The DPGI analysis showed that exposure to spinetoram resulted in populations of all three species being delayed ≥ 3 generation times. Exposure to the LC50 and the lower 95% CL resulted in delayed populations while exposure to the upper 95% CL concentration of spinetoram resulted in no recovery of any of the three species over the course of the modeling exercise (88 d). Exposure to the lower and upper 95% Cl and the LC50 of spinosad resulted in C. dubia populations being delayed ≥ 3 generations. D. pulex populations were not negatively affected after exposure to spinosad. D. magna populations were delayed ≥ 3 generations, but only after exposure to the upper 95% Cl of spinosad. These results illustrate that although the EPA risk quotient method indicated that spinetoram posed a risk to all three species and that spinosad only posed a risk to C. dubia, the DPGI showed that D. magna would be negatively affected by spinosad and none of the three species would reach a predetermined number of individuals after exposure to the upper 95% CL of spinetoram. Because the DPGI uses the 95% Cl as well as the LC50 in its calculation and produces a measure of population growth it provides more detailed information in terms of the potential risk of pesticides to populations than the RQ method.


Assuntos
Cladocera , Inseticidas , Praguicidas , Animais , Benchmarking , Daphnia , Humanos , Inseticidas/toxicidade , Praguicidas/toxicidade , Crescimento Demográfico
4.
Ecotoxicology ; 28(1): 62-68, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30594985

RESUMO

The use of indicator species to test for environmental stability and functioning is a widespread practice. In aquatic systems, several daphniids (Cladocera: Daphniidae) are commonly used as indicator species; registration of new pesticides are mandated by the Environmental Protection Agency to be accompanied by daphniid toxicity data. This reliance upon a few species to infer ecosystem health and function assumes similar responses to toxicants across species with potentially very different life histories and susceptibility. Incorporating lab-derived life-history data into a simple mathematical model, we explore the reliability of three different daphniid species as surrogates for each other by comparing their responses to reductions in survivorship and fecundity after simulated exposure to toxicants. Our results demonstrate that daphniid species' responses to toxicant exposure render them poor surrogates for one another, highlighting that caution should be exercised in using a surrogate approach to the use of indicator species in risk assessment.


Assuntos
Cladocera/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Testes de Toxicidade , Animais , Características de História de Vida , Modelos Biológicos , Especificidade da Espécie
5.
Theor Popul Biol ; 119: 15-25, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29195772

RESUMO

Prolonged exposure to a disturbance such as a toxicant has the potential to result in rapid evolution to toxicant resistance in many short-lived species such as daphniids. This evolution may allow a population to persist at higher levels of the toxicant than is possible without evolution. Here we apply evolutionary game theory to a Leslie matrix model for a daphniid population to obtain a Darwinian model that couples population dynamics with the dynamics of an evolving trait. We use the Darwinian model to consider how the evolution of resistance to the lethal or sublethal effects of a disturbance may change the population dynamics. In particular, we determine the conditions under which a daphniid population can persist by evolving toxicant resistance. We then consider the implications of this evolution in terms of the use of daphniids as surrogate species. We show for three species of daphniids that evolution of toxicant resistance means that one species may persist while another does not. These results suggest that toxicant studies that do not consider the potential of a species (or its surrogate) to develop toxicant resistance may not accurately predict the long term persistence of the species.


Assuntos
Evolução Biológica , Daphnia/efeitos dos fármacos , Animais , Modelos Biológicos , Dinâmica Populacional
6.
Environ Sci Technol ; 50(3): 1570-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26654684

RESUMO

Coal tar sealcoats applied to asphalt surfaces in North America, east of the Continental Divide, are enriched in petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs). The release of PAHs and other chemicals from sealcoat has the potential to contaminate nearby water bodies, reducing the resiliency of aquatic communities. Despite this, relatively little is known about the aquatic toxicology of sealcoat-derived contaminants. We assessed the impacts of stormwater runoff from sealcoated asphalt on juvenile coho salmon (Oncorhynchus kisutch) and embryo-larval zebrafish (Danio rerio). We furthermore evaluated the effectiveness of bioretention as a green stormwater method to remove PAHs and reduce lethal and sublethal toxicity in both species. We applied a coal tar sealcoat to conventional asphalt and collected runoff from simulated rainfall events up to 7 months postapplication. Whereas sealcoat runoff was more acutely lethal to salmon, a spectrum of cardiovascular abnormalities was consistently evident in early life stage zebrafish. Soil bioretention effectively reduced PAH concentrations by an order of magnitude, prevented mortality in juvenile salmon, and significantly reduced cardiotoxicity in zebrafish. Our findings show that inexpensive bioretention methods can markedly improve stormwater quality and protect fish health.


Assuntos
Alcatrão/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Filtração , Peixes , Hidrocarbonetos/toxicidade , América do Norte , Oncorhynchus kisutch , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Engenharia Sanitária , Solo , Testes de Toxicidade , Poluição da Água , Peixe-Zebra
7.
Environ Sci Technol ; 50(3): 1561-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26727247

RESUMO

Urban stormwater runoff is a globally significant threat to the ecological integrity of aquatic habitats. Green stormwater infrastructure methods such as bioretention are increasingly used to improve water quality by filtering chemical contaminants that may be harmful to fish and other species. Ubiquitous examples of toxics in runoff from highways and other impervious surfaces include polycyclic aromatic hydrocarbons (PAHs). Certain PAHs are known to cause functional and structural defects in developing fish hearts. Therefore, abnormal heart development in fish can be a sensitive measure of clean water technology effectiveness. Here we use the zebrafish experimental model to assess the effects of untreated runoff on the expression of genes that are classically responsive to contaminant exposures, as well as heart-related genes that may underpin the familiar cardiotoxicity phenotype. Further, we assess the effectiveness of soil bioretention for treating runoff, as measured by prevention of both visible cardiac toxicity and corresponding gene regulation. We find that contaminants in the dissolved phase of runoff (e.g., PAHs) are cardiotoxic and that soil bioretention protects against these harmful effects. Molecular markers were more sensitive than visible toxicity indicators, and several cardiac-related genes show promise as novel tools for evaluating the effectiveness of evolving stormwater mitigation strategies.


Assuntos
Cardiotoxinas/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero , Filtração , Fenótipo , Hidrocarbonetos Policíclicos Aromáticos/análise , Engenharia Sanitária , Solo , Poluentes Químicos da Água/análise , Peixe-Zebra
8.
J Econ Entomol ; 108(4): 1612-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470301

RESUMO

Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%.


Assuntos
Butanonas/farmacologia , Eugenol/análogos & derivados , Controle de Insetos/métodos , Feromônios/farmacologia , Tephritidae/efeitos dos fármacos , Animais , Carica/crescimento & desenvolvimento , Diclorvós/farmacologia , Eugenol/farmacologia , Havaí , Inseticidas/farmacologia , Masculino , Especificidade da Espécie
9.
Ecol Appl ; 24(4): 770-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988775

RESUMO

The use of the surrogate species concept is widespread in environmental risk assessment and in efforts to protect species that provide ecosystem services, yet there are no standard protocols for the choice of surrogates. Surrogates are often chosen on the basis of convenience or vague resemblances in physiology or life history to species of concern. Furthermore, our ability to predict how species of concern will fare when subjected to disturbances such as environmental contaminants or toxicants is often based on woefully misleading comparisons of static toxicity tests. Here we present an alternative approach that features a simple mathematical model parameterized with life history data applied to an assemblage of species that provide an important ecosystem service: a suite of parasitoid wasps that provide biological control of agricultural pests. Our results indicate that these parasitoid wasp species have different population responses to toxic insult--that is, we cannot predict how all four species will react to pesticide exposure simply by extrapolating from the response of any one species. Furthermore, sensitivity analysis of survivorship and reproduction demonstrates that the life stage most sensitive to pesticide disturbance varies among species. Taken together, our results suggest that the ability to predict the fate of a suite of species using the response of just one species (the surrogate species concept) is widely variable and potentially misleading.


Assuntos
Artrópodes/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Modelos Biológicos , Animais , Metamorfose Biológica
10.
Environ Sci Technol ; 47(6): 2925-31, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23409965

RESUMO

In western North America, mixtures of current use pesticides have been widely detected in streams and other aquatic habitats for threatened and endangered Pacific salmon and steelhead (Oncorhynchus sp.). These include organophosphate insecticides that inhibit acetylcholinesterase (AChE) enzyme activity in the salmon nervous system, thereby disrupting swimming and feeding behaviors. Several organophosphates have been shown to interact as mixtures to produce synergistic AChE inhibition at concentrations near or above the upper range of surface water detections in freshwater systems. To evaluate potential synergism at lower concentrations (near or below 1 part per billion), juvenile coho (Oncorhynchus kisutch) were exposed to a range of mixtures of diazinon-malathion and ethoprop-malathion below a cumulative 0.05 of the predicted EC50 for AChE inhibition, as determined from single chemical concentration-response curves. Brain enzyme inhibition was concentration-dependent, with a 90% reduction and a significant decrease in spontaneous swimming speed at the highest binary mixture concentrations evaluated (diazinon-malathion at 2.6 and 1.1 µg/L, respectively; ethoprop-malathion at 2.8 and 1.2 µg/L, respectively). Brain enzyme activity gradually recovered over six weeks. Our findings extend earlier observations of organophosphate synergism in salmon and reveal an unusually steep concentration-response relationship across a mere 2-fold increase in mixture concentration.


Assuntos
Inibidores da Colinesterase/toxicidade , Diazinon/toxicidade , Inseticidas/toxicidade , Malation/toxicidade , Oncorhynchus kisutch/fisiologia , Organotiofosfatos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/metabolismo , Oncorhynchus kisutch/crescimento & desenvolvimento , Natação
11.
Water Environ Res ; 85(9): 823-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24175412

RESUMO

Bioretention is an evolving type of Green Stormwater Infrastructure (GSI) designed to attenuate peak flows, reduce stormwater volume, and treat stormwater. This article examines the capabilities of a bioretention soil mixture of sand and compost enhanced with aluminum-based drinking water treatment residuals to reduce nutrients from stormwater runoff. Columns with and without a saturation zone and vegetation were compared to examine their role in removing nitrate and ortho-phosphate from stormwater. Results show that utilization of a saturation zone can significantly reduce nitrate in effluent water (71% compared to 33% without a saturated zone), even in a newly constructed system. However, ortho-phosphate reduction was significantly better in the columns without a saturated zone (80%) compared to columns with (67%). Plants did not significantly improve removal. This suggests amendments such as aluminum-based water treatment residuals for phosphorus removal and a saturation zone for nitrogen removal are needed during the initial establishment period.


Assuntos
Nitratos/isolamento & purificação , Fosfatos/isolamento & purificação , Águas Residuárias/análise , Purificação da Água/métodos , Chuva , Áreas Alagadas
12.
Aquat Toxicol ; 254: 106351, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423469

RESUMO

Neonicotinoid insecticides represent nearly a quarter of the global insecticide market and are widely used in agriculture but also for lawn, garden care, and pest control. They are highly water-soluble, persistent in soil, may enter the aquatic compartment via spray drift, runoff, or leaching, and contribute to downstream aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other groups, such as crustaceans, may also be affected. Furthermore, most studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates. The present study was designed to test potential toxicological effects of an environmentally relevant mixture of imidacloprid, clothianidin, and thiamethoxam on populations of Ceriodaphnia dubia and Daphnia magna under controlled conditions. Chronic toxicity tests were conducted in the laboratory, and survival and reproduction were measured for both species under environmentally relevant, 'worst-case' concentrations for each compound separately and in combination as pesticides are often detected as mixtures in aquatic environments. The neonicotinoids did not appear to affect the survival of C. dubia and D. magna. Reproduction of C. dubia was affected by the mixture whereas all three individual insecticides as well as the mixture caused a significant reduction in the reproduction of D. magna. Our results highlight the complexity of pesticide toxicity and show that traditional toxicological approaches such as, acute mortality studies and tests with single compounds can underestimate negative impacts that occur in the environment.


Assuntos
Cladocera , Inseticidas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Daphnia , Poluentes Químicos da Água/toxicidade , Neonicotinoides/toxicidade , Tiametoxam/farmacologia , Nitrocompostos/toxicidade
13.
Sci Total Environ ; 897: 165419, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429477

RESUMO

Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Neonicotinoides/toxicidade , Invertebrados , Inseticidas/análise , Nitrocompostos/toxicidade , Água Doce
14.
Environ Sci Technol ; 46(10): 5590-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22509961

RESUMO

Ecological risk assessments (ERA) of chemicals are often based on mortality and reproduction of individuals. To protect populations, fixed safety factors are applied to the data. However, the relationship between individuals and populations cannot easily be described by predefined numbers. The use of population models may reduce uncertainty and, hence, the risk for erroneous assessments. However, introducing models also introduces additional complexity. Therefore, it is desirable to keep the models as simple as possible. The objective of the present study was to determine whether simple risk equations or matrix models can improve ERA compared to traditional endpoints. To examine this, complex models that included environmental stochasticity and density dependence were used to simulate population level risk based on dose-response data for five chemicals. The risk, measured as probability for pseudo extinction and recovery time, was then compared to risk estimates based on individual level data (acute and chronic), risk equations, and simple matrix models. The results showed that the simple matrix models reduced uncertainty by more than 88% and 76% compared to acute and chronic data, respectively. Also the simple risk equation reduced uncertainty considerably (80% and 61% compared to acute and chronic data, respectively).


Assuntos
Fenômenos Ecológicos e Ambientais , Determinação de Ponto Final , Poluentes Ambientais/toxicidade , Medição de Risco/métodos , Animais , Feminino , Fertilidade/efeitos dos fármacos , Peixes/metabolismo , Nível de Efeito Adverso não Observado , Dinâmica Populacional , Padrões de Referência , Análise de Sobrevida , Fatores de Tempo
15.
J Econ Entomol ; 105(5): 1557-65, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23156150

RESUMO

Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP (2,2-dichlorovinyl dimethyl phosphate) insecticide were measured in traps as potential detection and male annihilation technique (MAT) devices. Comparisons were made with 1) liquid lure and insecticide formulations, 2) solid cones and plugs with an insecticidal strip, and 3) solid single and double lure wafers with DDVP for captures of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); oriental fruit fly, Bactrocera dorsalis Hendel; and melon fly, B. cucurbitae Coquillett. Bucket and Jackson traps were tested in a coffee plantation near Eleele, Kauai Island, HI (trials at high populations) and avocado orchards near Kona, HI Island, HI (trials at low populations). Captures of all three species with Mallet TMR were not different from Mallet CMR; therefore, subsequent experiments did not include Mallet CMR because of higher production costs. In MAT trials near Eleele, HI captures in AWPM traps with Mallet TMR wafers were equal to any other solid lure (single or double) except the Mallet ME wafer. In survey trials near Kona, captures of C. capitata, B. cucurbitae, and B. dorsalis with Mallet TMR wafers were equal to those for the standard TML, ME, and C-L traps used in FL and CA. A solid Mallet TMR wafer is safer, more convenient to handle, and may be used in place of several individual lure and trap systems, potentially reducing costs of large survey and detection programs in Florida and California, and MAT programs in Hawaii.


Assuntos
Diclorvós/farmacologia , Controle de Insetos/métodos , Inseticidas/farmacologia , Feromônios/farmacologia , Tephritidae/efeitos dos fármacos , Animais , Ceratitis capitata/efeitos dos fármacos , Ceratitis capitata/metabolismo , Café , Havaí , Controle de Insetos/instrumentação , Masculino , Persea , Densidade Demográfica , Especificidade da Espécie , Tephritidae/metabolismo
16.
Ecotoxicology ; 20(6): 1268-76, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21503614

RESUMO

Ecological risk assessments (ERA) are mostly based on effects on survival (S) and fertility (F) of individuals. However, the protection goals are most often defined on the population or community levels. It has been argued that population models can be a useful link between the individual and the population in ERA. However, for population models to be efficiently and routinely used in ERA, the level of model complexity that is needed has to be clearly determined. In the present study, complex age classified matrix population models and simple 2-stage models were developed for three species of Daphnia. The population growth rate (λ) from the simple 2-stage model correlated strongly to the results of the complex matrix model, which included density dependence and temporary reductions in S and F. This shows that the information that can be provided by more complex models also can be relatively well predicted with the simpler model. The output of the complex matrix population models were also compared to the reductions in S that were used in the models. This was done because acute mortality is the most commonly used estimate of toxic effects. The results showed that λ from the 2-stage model correlated stronger to the endpoints of the matrix model than S did in all cases except for pulsed exposures, where S and λ correlated equally well.


Assuntos
Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/crescimento & desenvolvimento , Ecotoxicologia , Modelos Teóricos , Dinâmica Populacional , Medição de Risco/métodos
17.
J Environ Sci Health B ; 46(4): 336-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21512932

RESUMO

The effects of the natural insecticide, spinosad, and the agricultural adjuvant, R-11, were evaluated on populations of the water flea, Ceriodaphnia dubia after chronic 8-day exposures. The number of individuals used to start the chronic exposure studies (founders) and the number of offspring/surviving female were significantly reduced after exposure to spinosad concentrations ≥ 2.5 µg/L. The final number of individuals was significantly reduced after exposure to spinosad concentrations ≥ 1.0 µg/L. Population growth rate was significantly reduced after exposure to spinosad concentrations ≥ 1 µg/L. Extinction occurred (defined as negative population growth rate) after exposure to spinosad concentrations of 10 µg/L. Therefore, negative effects were observed in C. dubia after exposure to spinosad at a concentration near the chronic expected environmental concentration (EEC) of 2.3 µg/L. R-11 was much less toxic to C. dubia than spinosad. The number of founders was not significantly reduced until C. dubia were exposed to 12,000 µg/L. The number of offspring/surviving female, final number of individuals, and population growth rate were significantly reduced after exposure to R-11 concentrations ≥ 5,000 µg/L. Extinction occurred after exposure to R-11 concentrations of 12,000 µg/L which was above the EEC of 790 µg/L. These results indicate that spinosad and R-11 both have lethal and sublethal effects on C. dubia. However, spinosad appears to affect C. dubia at or near the EEC while R-11 does not negatively affect this species until concentrations are much higher than the EEC.


Assuntos
Cladocera/efeitos dos fármacos , Macrolídeos/toxicidade , Polietilenoglicóis/toxicidade , Animais , Cladocera/crescimento & desenvolvimento , Combinação de Medicamentos , Feminino , Inseticidas/toxicidade , Sinergistas de Praguicidas/toxicidade , Crescimento Demográfico , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
18.
Integr Environ Assess Manag ; 17(1): 95-109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064347

RESUMO

The population level is often the biological endpoint addressed in ecological risk assessments (ERAs). However, ERAs tend to ignore the metapopulation structure, which precludes an understanding of how population viability is affected by multiple stressors (e.g., toxicants and environmental conditions) at large spatial scales. Here we integrate metapopulation model simulations into a regional-scale, multiple stressors risk assessment (Bayesian network relative risk model [BN-RRM]) of organophosphate (OP) exposure, water temperature, and DO impacts on Chinook salmon (Oncorhynchus tshawytscha). A matrix metapopulation model was developed for spring Chinook salmon in the Yakima River Basin (YRB), Washington, USA, including 3 locally adapted subpopulations and hatchery fish that interact with those subpopulations. Three metapopulation models (an exponential model, a ceiling density-dependent model, and an exponential model without dispersal) were integrated into the BN-RRM to evaluate the effects of population model assumptions on risk calculations. Risk was defined as the percent probability that the abundance of a subpopulation would decline from their initial abundance (500 000). This definition of risk reflects the Puget Sound Partnership's management goal of achieving "no net loss" of Chinook abundance. The BN-RRM model results for projection year 20 showed that risk (in % probability) from OPs and environmental stressors was higher for the wild subpopulations-the American River (50.9%-97.7%) and Naches (39.8%-84.4%) spring Chinook-than for the hatchery population (CESRF 18.5%-46.5%) and the Upper Yakima subpopulation (21.5%-68.7%). Metapopulation risk was higher in summer (58.1%-68.7%) than in winter (33.6%-53.2%), and this seasonal risk pattern was conserved at the subpopulation level. To reach the management goal in the American River spring Chinook subpopulation, the water temperature conditions in the Lower Yakima River would need to decrease. We demonstrate that 1) relative risk can vary across a metapopulation's spatial range, 2) dispersal among patches impacts subpopulation abundance and risk, and 3) local adaptation within a salmon metapopulation can profoundly impact subpopulation responses to equivalent stressors. Integr Environ Assess Manag 2021;17:95-109. © 2020 SETAC.


Assuntos
Praguicidas , Salmão , Animais , Teorema de Bayes , Praguicidas/toxicidade , Risco , Rios , Washington
19.
Ecotoxicol Environ Saf ; 73(2): 132-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19833391

RESUMO

The toxicity of the nonylphenol polyethoxylate, R-11 and the neonicotinoid insecticide, imidacloprid were evaluated on the crustacean, Ceriodaphnia dubia Richard. These compounds were evaluated separately and as a mixture because they are applied for pest control and may exist as a binary mixture in surface water. Acute mortality estimates (48h) were developed followed by population-level studies after chronic exposure. LC50s and 95% CL for R-11 and imidacloprid were 9241 (8521-9842)microg/l and 2.1 (1.1-3.4)microg/l, respectively. In the population study, C. dubia were exposed to concentrations equivalent to the acute LC25 for R-11 (8090microg/l) and imidacloprid (0.3microg/l) separately and as a mixture for 8d. The results of the chronic study indicated that R-11 had a greater impact on population parameters than imidacloprid and the mixture had a greater impact than either compound alone. For example, the total number of individuals at the end of the chronic study was 73%, 19%, and 6% of the control for imidacloprid, R-11, and the binary mixture, respectively. Additionally, exposure to R-11, imidacloprid, and the mixture resulted in 52%, 10%, and 91% reductions in population growth rate compared to the control, respectively. The results of this study indicate that when combined, R-11 and imidacloprid act in a more than additive manner. Therefore, it is important that their potential effects on aquatic organisms be evaluated together.


Assuntos
Cladocera/efeitos dos fármacos , Inseticidas/toxicidade , Nonoxinol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Imidazóis/toxicidade , Dose Letal Mediana , Mortalidade , Neonicotinoides , Nitrocompostos/toxicidade , Crescimento Demográfico , Fatores de Tempo
20.
Ecotoxicology ; 19(6): 1124-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20405204

RESUMO

The effects of the tetramic acid insecticide, spirotetramat and the agricultural adjuvant, Destiny, were evaluated on the Cladoceran, Ceriodaphnia dubia. These compounds were evaluated separately and as a mixture because they can be applied together for control of certain crop pests and therefore have the potential to enter surface water as a binary mixture. Acute mortality estimates (48 h) were developed followed by chronic exposure (8 days) studies where several population parameters were recorded. Acute LC50 and 95% CL for spirotetramat and Destiny were estimated to be 23.8 (14.5-35.4) and 26.71 (20.8-34.0) mg/l, respectively. Thus, spirotetramat and Destiny were equitoxic to C. dubia at LC50. For the chronic population study, C. dubia populations were exposed to a range of concentrations for spirotetramat and Destiny singly and as a mixture. Each chemical alone reduced the number of founding individuals, offspring/female, final population size, and population growth rate in a concentration-dependent manner. However, exposure to the mixture caused significantly greater reductions in these parameters than either compound alone. These results indicate that agricultural adjuvants and pesticides may cause more damage to aquatic organisms as a mixture than either product alone. Therefore, future evaluations of pesticide effects should consider the effects of adjuvants as a mixture with pesticides when these products are recommended to be applied together for pest control.


Assuntos
Cladocera/efeitos dos fármacos , Inseticidas/toxicidade , Sinergistas de Praguicidas/toxicidade , Pirrolidinonas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/fisiologia , Feminino , Dose Letal Mediana , Masculino , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA