Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(8): 9082-9092, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024610

RESUMO

Transiently increased teat wall thickness in response to machine milking has been documented by various methods, including ultrasound. However, correlative ultrasonography and histology to detect the origin of this phenomenon is lacking. The first goal of the present study was to evaluate and compare milking-related changes of the teat tissue in 2 breeds of dairy cows (11 Simmental and 3 Holstein) using B-mode ultrasonography. Additionally, the observed changes were compared with ultrasonographic findings in a Holstein cow with periparturient udder edema. Finally, corresponding histological sections of the Simmental teats were analyzed and compared with those from a lactating nonmilked Angus cow. We hypothesized that the mechanical load of both stretching by the vacuum during phases of open teat cup liner and compression by the closed liner during machine milking results in a transient congestion of blood vessels in the teat wall. The barrel of 1 front teat of each cow was scanned immediately before and after machine milking (system vacuum: 42 kPa; pulsation rate: 60 cycles/min; pulsation ratio: 65:35). Shortly after milking (33 ± 6 min), the Simmentals were slaughtered, and their scanned teat was immediately removed and processed for investigation by light microscopy. Ultrasonography after milking revealed anechoic tubular structures mainly in the inner half of the teat wall. Histological examination revealed these structures to be thick-walled veins. The left front and hind teats of the nonmilked lactating cow, collected and prepared identically to those from the Simmental cows, showed the same histological features. Ultrasonographic measurements showed that the diameter of these veins significantly increased after milking compared with matching images before milking. This effect was most pronounced in the Holstein cows. Similarly, these veins were very prominent in the periparturient cow. However, neither the milked cows, including the periparturient cow, nor the lactating nonmilked cow provided any evidence of edematous extravasation on ultrasonography or histology. These findings corroborated our hypothesis that the increase in size of thick-walled veins in the teat tissue is the main reason for the thickening of the teat walls in response to machine milking.


Assuntos
Indústria de Laticínios , Glândulas Mamárias Animais , Animais , Bovinos , Feminino , Lactação , Leite , Mamilos
2.
J Dairy Sci ; 103(10): 9250-9260, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32747105

RESUMO

Traditionally, machine milking is performed at a constant vacuum supply. The system vacuum has to be set high enough to allow a sufficiently high vacuum at the teat end, despite the inevitable vacuum drop caused by milk flow. This leads to an increased vacuum load on the teat, especially when milk flow ceases at the end of milking. We tested the hypothesis that a milk flow-controlled adaptation of vacuum settings during milking allows even higher vacuum levels than are usually recommended during the period of high milk flow if the vacuum is reduced during low milk flow. Combined with a high cluster detachment flow rate level, increased milking performance is expected without an increased effect on teat tissue. Ten Holstein dairy cows were milked with a bucket milker with the claw vacuum adjusted in the absence of milk flow at a regular (43 kPa) and high (48 kPa) claw vacuum, with and without vacuum reduction during low milk flow (<2 kg/min), and combined with different cluster detachment levels (0.2, 0.6, and 1 kg/min). Each treatment was applied in each cow during 4 subsequent milkings in a randomized crossover design. Both claw vacuum and milk flow were continuously recorded throughout milking. Teat tissue thickness was measured using a cutimeter and teat wall diameter was measured by B-mode ultrasonography at 5 min after the end of milking. Milk yield was not affected by either vacuum settings or detachment levels. Machine-on time in treatments with vacuum reduction was shorter at high than at low vacuum and decreased with increasing detachment levels. Average milk flow was higher at high than at low vacuum and reached highest values in milkings without vacuum reduction at both vacuum levels. The average milk flow was higher at a cluster detachment of 1 kg/min than at 0.2 kg/min. However, both teat tissue thickness and (as a tendency) teat wall diameter at 5 min after cluster detachment were higher in milkings at high vacuum without vacuum reduction compared with all other treatments. In conclusion, high claw vacuum up to 48 kPa increases milking performance because of higher milk flow and reduced machine-on time. Negative effects of high vacuum on teat tissue are prevented by reducing vacuum during low milk flow (<2 kg/min) at the start and end of milking. Additionally, using a high cluster detachment level reduces machine-on time without a loss of harvested milk.


Assuntos
Bovinos , Indústria de Laticínios/métodos , Leite , Animais , Estudos Cross-Over , Indústria de Laticínios/instrumentação , Feminino , Lactação , Glândulas Mamárias Animais/diagnóstico por imagem , Mamilos , Ultrassonografia , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA