Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(7): 3542-3552, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32064528

RESUMO

MeCP2 is a nuclear protein that binds to sites of cytosine methylation in the genome. While most evidence confirms this epigenetic mark as the primary determinant of DNA binding, MeCP2 is also reported to have an affinity for non-methylated DNA sequences. Here we investigated the molecular basis and in vivo significance of its reported affinity for non-methylated GT-rich sequences. We confirmed this interaction with isolated domains of MeCP2 in vitro and defined a minimal target DNA sequence. Binding depends on pyrimidine 5' methyl groups provided by thymine and requires adjacent guanines and a correctly orientated A/T-rich flanking sequence. Unexpectedly, full-length MeCP2 protein failed to bind GT-rich sequences in vitro. To test for MeCP2 binding to these motifs in vivo, we analysed human neuronal cells using ChIP-seq and ATAC-seq technologies. While both methods robustly detected DNA methylation-dependent binding of MeCP2 to mCG and mCAC, neither showed evidence of MeCP2 binding to GT-rich motifs. The data suggest that GT binding is an in vitro phenomenon without in vivo relevance. Our findings argue that MeCP2 does not read unadorned DNA sequence and therefore support the notion that its primary role is to interpret epigenetic modifications of DNA.


Assuntos
DNA/química , DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sítios de Ligação , Linhagem Celular , Citosina/metabolismo , Guanina/química , Humanos , Motivos de Nucleotídeos , Ligação Proteica , Timina/química
2.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382409

RESUMO

Meiosis creates genetic diversity by recombination and segregation of chromosomes. The synaptonemal complex assembles during meiotic prophase I and assists faithful exchanges between homologous chromosomes, but how its assembly/disassembly is regulated remains to be understood. Here, we report how two major posttranslational modifications, phosphorylation and ubiquitination, cooperate to promote synaptonemal complex assembly. We found that the ubiquitin ligase complex SCF is important for assembly and maintenance of the synaptonemal complex in Drosophila female meiosis. This function of SCF is mediated by two substrate-recognizing F-box proteins, Slmb/ßTrcp and Fbxo42. SCF-Fbxo42 down-regulates the phosphatase subunit PP2A-B56, which is important for synaptonemal complex assembly and maintenance.


Assuntos
Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas F-Box/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Meiose , Recombinação Genética/genética
3.
Plant Physiol Biochem ; 97: 207-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26480470

RESUMO

Chlorophylls are essential cofactors in photosynthesis. All steps in the chlorophyll pathway are well characterized except for the cyclase reaction in which the fifth ring of the chlorophyll molecule is formed during conversion of Mg-protoporphyrin IX monomethyl ester into Protochlorophyllide. The only subunit of the cyclase identified so far, is AcsF (Xantha-l in barley and Chl27 in Arabidopsis). This subunit contains a typical consensus di-iron-binding sequence and belongs to a subgroup of di-iron proteins, such as the plastid terminal oxidase (PTOX) in the chloroplast and the alternative oxidase (AOX) found in mitochondria. In order to complete the catalytic cycle, the irons of these proteins need to be reduced from Fe(3+) to Fe(2+) and either a reductase or another form of reductant is required. It has been reported that the alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) utilize the di-iron center to oxidise ubiquinol and plastoquinol, respectively. In this paper, we have used a specific inhibitor of di-iron proteins as well as Arabidopsis and barley mutants affected in regulation of photosynthetic electron flow, to show that the cyclase step indeed is directly coupled to the plastoquinone pool. Thus, plastoquinol might act as an electron donor for the cyclase reaction and thereby fulfil the role of a cyclase reductase. That would provide a functional connection between the redox status of the thylakoids and the biosynthesis of chlorophyll.


Assuntos
Vias Biossintéticas , Clorofila/biossíntese , Plastoquinona/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Clorofila/química , Fluorescência , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Homeostase/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Modelos Biológicos , Mutação/genética , Oxirredução/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Protoclorifilida/metabolismo , Protoporfirinas/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA