Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neurochem ; 167(2): 296-317, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37753846

RESUMO

Mutations in PARK15, which encodes for the F-box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase-positive or glutamatergic forebrain neurons leads to late-onset or early-onset motor dysfunction, respectively. In this study, we examined NEX-Cre;Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX-Cre;Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control.

2.
Cell ; 135(5): 907-18, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041753

RESUMO

Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.


Assuntos
Envelhecimento/genética , Cromatina/metabolismo , Instabilidade Genômica , Sirtuínas/genética , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias , Técnicas de Inativação de Genes , Humanos , Linfoma/metabolismo , Camundongos , Dados de Sequência Molecular , Estresse Oxidativo , Sirtuína 1 , Organismos Livres de Patógenos Específicos , Neoplasias do Timo/metabolismo , Leveduras/citologia , Leveduras/metabolismo
3.
Biochem J ; 478(12): 2179-2199, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34060591

RESUMO

The regulation of proteasome activity is essential to cellular homeostasis and defects have been implicated in various disorders including Parkinson disease. The F-box protein FBXO7 has been implicated in early-onset parkinsonism and has previously been shown to have a regulatory role in proteasome activity and assembly. Here, we report the association of the E3 ubiquitin ligase FBXO7-SCF (SKP1, cullin-1, F-box protein) with the BAG6 complex, consisting of the subunits BAG6, GET4 and UBL4A. We identify the subunit GET4 as a direct interactor of FBXO7 and we show that the subunits GET4 and UBL4A are required for proper proteasome activity. Our findings demonstrate reduced binding of FBXO7 variants to GET4 and that FBXO7 variants bring about reduced proteasome activity. In addition, we find that GET4 is a non-proteolytic substrate of FBXO7, that binding of GET4 to BAG6 is enhanced in the presence of active FBXO7-SCF and that the cytoplasmic localization of the BAG6 complex is dependent on the E3 ubiquitin ligase activity. Taken together, our study shows that the parkinsonism-associated FBXO7 cooperates with the BAG6 complex in proteasome function and determines the subcellular localization of this complex.


Assuntos
Proteínas F-Box/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Frações Subcelulares/metabolismo , Ubiquitinas/metabolismo , Proteínas F-Box/genética , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Mutação , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Ubiquitinação , Ubiquitinas/genética
4.
Mol Cell Neurosci ; 112: 103602, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581237

RESUMO

Ubiquitination is a key posttranslational modification for the controlled protein degradation and proteostasis. The substrate specificity is determined by a family of E3 ubiquitin ligases, which are encoded by more than 600 genes in the mammalian genome. Gain- or loss-of-function of a number of E3 genes results in neurodegeneration or neurodevelopmental disorders, affecting synapse function. This implies that the specific ubiquitination of synaptic substrates are of crucial importance for the normal neuronal network. In this review, we will summarize the history, current topics, and challenges in the field of ubiquitination-dependent regulations of synaptogenesis and synaptic transmission.


Assuntos
Encéfalo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/enzimologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Animais , Encéfalo/patologia , Humanos , Camundongos , Família Multigênica , Degeneração Neural/enzimologia , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Plasticidade Neuronal , Doença de Parkinson/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteostase , Domínios RING Finger , Transmissão Sináptica , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/genética
5.
J Neurosci ; 39(28): 5606-5626, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31085610

RESUMO

Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin-proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells. In our study, we examined how the E3 ubiquitin ligase FBXO7-SCF (SKP1, Cul1, F-box protein) expressed in myelinating cells affects the axon-myelin unit. Deletion of Fbxo7 in oligodendrocytes and Schwann cells in mice using the Cnp1-Cre driver line led to motor impairment due to hindlimb paresis. It did not result in apoptosis of myelinating cells, nor did it affect the proper myelination of axons or lead to demyelination. It however triggered axonal degeneration in the CNS and resulted in the severe degeneration of axons in the PNS, inducing a full-blown neuropathy. Both the CNS and PNS displayed inflammation, while the PNS was also characterized by fibrosis, massive infiltration of macrophages, and edema. Tamoxifen-induced deletion of Fbxo7, after myelination using the Plp1-CreERT2 line, led to a small number of degenerated axons and hence a very mild peripheral neuropathy. Interestingly, loss of Fbxo7 also resulted in reduced proteasome activity in Schwann cells but not in cerebellar granule neurons, indicating a specific sensitivity of the former cell type. Together, our results demonstrate an essential role for FBXO7 in myelinating cells to support associated axons, which is fundamental to the proper developmental establishment and the long-term integrity of the axon-myelin unit.SIGNIFICANCE STATEMENT The myelination of axons facilitates the fast propagation of electrical signals and the trophic support of the myelin-axon unit. Here, we report that deletion of Fbxo7 in myelinating cells in mice triggered motor impairment but had no effect on myelin biogenesis. Loss of Fbxo7 in myelinating glia, however, led to axonal degeneration in the CNS and peripheral neuropathy of the axonal type. In addition, we found that Schwann cells were particularly sensitive to Fbxo7 deficiency reflected by reduced proteasome activity. Based on these findings, we conclude that Fbxo7 is essential for the support of the axon-myelin unit and long-term axonal health.


Assuntos
Axônios/metabolismo , Proteínas F-Box/genética , Bainha de Mielina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Apoptose , Axônios/patologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Proteínas F-Box/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
J Neurochem ; 155(5): 471-474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33011998

RESUMO

Restless legs syndrome (RLS) is a movement disorder that is characterized by an uncomfortable sensation in the legs, and the urge to move the legs. Meis1 has previously identified as a risk gene for RLS. This Editorial highlights the study by Lyu and colleagues who developed a novel genetic mouse model heterozygous for Meis1 expression in neurons of the central nervous system. Using behavioral tests, the authors established hyperactivity of the mice, reminiscent of symptoms found in RLS patients. In addition, the authors took a closer look at the iron, dopaminergic, and cholinergic system of these mice.


Assuntos
Modelos Animais de Doenças , Modelos Genéticos , Proteína Meis1/deficiência , Proteína Meis1/genética , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Animais , Caenorhabditis elegans , Humanos , Camundongos , Camundongos Knockout , Síndrome das Pernas Inquietas/patologia
7.
EMBO J ; 35(18): 2008-25, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27497298

RESUMO

Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix-loop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.


Assuntos
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Técnicas de Inativação de Genes , Transtornos Parkinsonianos/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Ubiquitinação
8.
J Neurochem ; 144(2): 118-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134665

RESUMO

Parkinson disease (PD) is, without doubt, a burden on modern society as the prevalence increases significantly with age. Owing to this growing number of PD cases, it is more critical than ever to understand the pathogenic mechanisms underlying PD to identify therapeutic targets. The discovery of genetic mutations associated with PD and parkinsonism paves the way toward this goal. Even though, familial forms of the disease represent the minority of PD cases and some forms are so rare that there are only a few affected families, the research on the associated genes is invaluable. Recent additions to PARK mutations are those in PARK15 that encodes the F-box protein O-type 7 (FBXO7). In this review, we highlight the recent research on FBXO7, which advances our knowledge of the etiopathological pathways and fills unexpected gaps therein, justifying the dedicated study of rare variants of PD.


Assuntos
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Blefarospasmo/genética , Globo Pálido , Humanos , Camundongos , Doença de Parkinson Secundária/genética
9.
Genes Dev ; 24(8): 799-813, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20395366

RESUMO

Neuronal polarity is essential for normal brain development and function. However, cell-intrinsic mechanisms that govern the establishment of neuronal polarity remain to be identified. Here, we report that knockdown of endogenous FOXO proteins in hippocampal and cerebellar granule neurons, including in the rat cerebellar cortex in vivo, reveals a requirement for the FOXO transcription factors in the establishment of neuronal polarity. The FOXO transcription factors, including the brain-enriched protein FOXO6, play a critical role in axo-dendritic polarization of undifferentiated neurites, and hence in a switch from unpolarized to polarized neuronal morphology. We also identify the gene encoding the protein kinase Pak1, which acts locally in neuronal processes to induce polarity, as a critical direct target gene of the FOXO transcription factors. Knockdown of endogenous Pak1 phenocopies the effect of FOXO knockdown on neuronal polarity. Importantly, exogenous expression of Pak1 in the background of FOXO knockdown in both primary neurons and postnatal rat pups in vivo restores the polarized morphology of neurons. These findings define the FOXO proteins and Pak1 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal polarity, thus identifying a novel function for the FOXO transcription factors in a unique aspect of neural development.


Assuntos
Polaridade Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Animais , Polaridade Celular/genética , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Hipocampo/fisiologia , Neurônios/metabolismo , Interferência de RNA , Ratos
10.
J Neurosci ; 35(23): 8701-17, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063905

RESUMO

The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.


Assuntos
Encéfalo/patologia , Movimento Celular/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Proteínas F-Box/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Frações Subcelulares/metabolismo
11.
J Neurochem ; 139(2): 159-161, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27723099

RESUMO

This Editorial highlights a study by Huang and colleagues in the current issue of Journal of Neurochemistry. The authors introduce a novel ALS-FTD (amyotrophic lateral sclerosis-frontotemporal dementia) rat model to explore the role of the UBLQN2 gene that has previously been associated with familial ALS-FTD. Over-expression of ubiquilin 2 in the cortex (CTX) and hippocampus of the rat results in ubiquilin 2 aggregates and neurodegeneration together with cognitive deficits. The new rat model not only gives insight into potential molecular underpinnings of ALS-FTD, but also represents an important new tool for future research and therapeutic approaches. Read the highlighted article 'Increased Ubqln2 expression causes neuron death in transgenic rats' on page 285.


Assuntos
Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Neurônios/patologia , Ratos Transgênicos/genética , Ubiquitinas/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia , Morte Celular , Degeneração Lobar Frontotemporal/patologia , Ratos
12.
Development ; 139(19): 3600-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949615

RESUMO

Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.


Assuntos
Axônios/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Células HEK293 , Humanos , Neurogênese/genética , Neurogênese/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/fisiologia
13.
Nature ; 442(7101): 471-4, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16810178

RESUMO

In the developing nervous system, Id2 (inhibitor of DNA binding 2, also known as inhibitor of differentiation 2) enhances cell proliferation, promotes tumour progression and inhibits the activity of neurogenic basic helix-loop-helix (bHLH) transcription factors. The anaphase promoting complex/cyclosome and its activator Cdh1 (APC/C(Cdh1)) restrains axonal growth but the targets of APC/C(Cdh1) in neurons are unknown. Id2 and other members of the Id family are very unstable proteins that are eliminated as cells enter the quiescent state, but how they are targeted for degradation has remained elusive. Here we show that Id2 interacts with the core subunits of APC/C and Cdh1 in primary neurons. APC/C(Cdh1) targets Id2 for degradation through a destruction box motif (D box) that is conserved in Id1 and Id4. Depletion of Cdh1 stabilizes Id proteins in neurons, whereas Id2 D-box mutants are impaired for Cdh1 binding and remain stable in cells that exit from the cell cycle and contain active APC/C(Cdh1). Mutants of the Id2 D box enhance axonal growth in cerebellar granule neurons in vitro and in the context of the cerebellar cortex, and overcome the myelin inhibitory signals for growth. Conversely, activation of bHLH transcription factors induces a cluster of genes with potent axonal inhibitory functions including the gene coding for the Nogo receptor, a key transducer of myelin inhibition. Degradation of Id2 in neurons permits the accumulation of the Nogo receptor, thereby linking APC/C(Cdh1) activity with bHLH target genes for the inhibition of axonal growth. These findings indicate that deregulated Id activity might be useful to reprogramme quiescent neurons into the axonal growth mode.


Assuntos
Axônios/fisiologia , Ciclo Celular , Proteína 2 Inibidora de Diferenciação/metabolismo , Processamento de Proteína Pós-Traducional , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Humanos , Mitose , Especificidade por Substrato
14.
Neuron ; 50(3): 389-400, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16675394

RESUMO

Axonal growth is fundamental to the establishment of neuronal connectivity in the brain. However, the cell-intrinsic mechanisms that govern axonal morphogenesis remain to be elucidated. The ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) suppresses the growth of axons in postmitotic neurons. Here, we report that Cdh1-APC operates in the nucleus to inhibit axonal growth. We also identify the transcriptional corepressor SnoN as a key target of neuronal Cdh1-APC that promotes axonal growth. Cdh1 forms a physical complex with SnoN and stimulates the ubiquitin-dependent proteasomal degradation of SnoN in neurons. Knockdown of SnoN in neurons significantly reduces axonal growth and suppresses Cdh1 RNAi enhancement of axonal growth. In addition, SnoN knockdown in vivo suggests an essential function for SnoN in the development of granule neuron parallel fibers in the cerebellar cortex. These findings define Cdh1-APC and SnoN as components of a cell-intrinsic pathway that orchestrates axonal morphogenesis in a transcription-dependent manner in the mammalian brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Cones de Crescimento/metabolismo , Inibidores do Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Encéfalo/citologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Córtex Cerebelar/citologia , Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Regulação para Baixo/fisiologia , Cones de Crescimento/ultraestrutura , Inibidores do Crescimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Substâncias Macromoleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/genética , Interferência de RNA/fisiologia , Ratos , Ratos Long-Evans , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/genética
15.
J Neurosci ; 29(13): 4322-7, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339626

RESUMO

The ubiquitin ligase Cdh1-anaphase promoting complex (Cdh1-APC) plays a key role in the control of axonal morphogenesis in the mammalian brain, but the mechanisms that regulate neuronal Cdh1-APC function remain incompletely understood. Here, we have characterized the effect of phosphorylation of Cdh1 at cyclin-dependent kinase (Cdk) sites on Cdh1-APC function in neurons. We replaced nine conserved sites of Cdk-induced Cdh1 phosphorylation with alanine (9A) or aspartate (9D) to mimic hypo- or hyper-phosphorylation, respectively. We found that the 9A mutation triggered the proteasome-dependent degradation of Cdh1, and conversely the 9D mutation stabilized Cdh1 in neuronal cells. However, the phosphomimic 9D Cdh1 protein failed to associate with the APC core protein Cdc27. In addition, whereas wild-type and 9A Cdh1 predominantly localized to the nucleus, the 9D Cdh1 protein accumulated in the cytoplasm in neurons. Importantly, in contrast to wild-type and 9A Cdh1, the 9D Cdh1 mutant failed to inhibit axon growth in primary cerebellar granule neurons. Collectively, our results suggest that phosphorylation of neuronal Cdh1 at Cdk sites triggers the stabilization of an inactive form of Cdh1 that accumulates in the cytoplasm, leading to the inhibition of Cdh1-APC function in the control of axon growth. Thus, phosphorylation of Cdh1 may represent a critical mechanism regulating Cdh1-APC function in the nervous system.


Assuntos
Axônios/fisiologia , Caderinas/metabolismo , Neurônios/citologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Análise de Variância , Ciclossomo-Complexo Promotor de Anáfase , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Caderinas/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Leupeptinas/farmacologia , Mutação/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Purinas/farmacologia , Ratos , Ratos Long-Evans , Roscovitina , Fatores de Tempo , Transfecção/métodos
16.
J Neurosci ; 29(13): 4312-21, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339625

RESUMO

The transcriptional corepressor SnoN is a critical regulator of axonal morphogenesis, but how SnoN drives axonal growth is unknown. Here, we report that gene-profiling analyses in cerebellar granule neurons reveal that the large majority of genes altered upon SnoN knockdown are surprisingly downregulated, suggesting that SnoN may activate transcription in neurons. Accordingly, we find that the transcriptional coactivator p300 interacts with SnoN, and p300 plays a critical role in SnoN-induced axon growth. We also identify the gene encoding the signaling scaffold protein Ccd1 as a critical target of SnoN in neurons. Ccd1 localizes to the actin cytoskeleton, is enriched at axon terminals in neurons, and activates the axon growth-promoting kinase JNK (c-Jun N-terminal protein kinase). Knockdown of Ccd1 in neurons reduces axonal length and suppresses the ability of SnoN to promote axonal growth. Importantly, Ccd1 knockdown in rat pups profoundly impairs the formation of granule neuron parallel fiber axons in the rat cerebellar cortex in vivo. These findings define a novel SnoN-Ccd1 link that promotes axonal growth in the mammalian brain, with important implications for axonal development and regeneration.


Assuntos
Axônios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Chlorocebus aethiops , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Análise em Microsséries/métodos , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção/métodos , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
17.
J Neurosci ; 28(8): 1961-9, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18287512

RESUMO

Axon growth is critical to the establishment of neuronal connectivity. The E3 ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) and its substrate the transcriptional modulator SnoN form a cell-intrinsic pathway that orchestrates axonal morphogenesis in the mammalian brain. How the Cdh1-APC/SnoN pathway is controlled in the nervous system remained unknown. Here, we report that the TGFbeta-regulated signaling protein Smad2 plays a key role in regulating the Cdh1-APC/SnoN pathway in neurons. We find that Smad2 is expressed in primary granule neurons of the developing rat cerebellar cortex. The Smad signaling pathway is basally activated in neurons. Endogenous Smad2 is phosphorylated, localized in the nucleus, and forms a physical complex with endogenous SnoN in granule neurons. Inhibition of Smad signaling by several distinct approaches, including genetic knock-down of Smad2, stimulates axonal growth. Biochemical evidence and genetic epistasis analyses reveal that Smad2 acts upstream of SnoN in a shared pathway with Cdh1-APC in the control of axonal growth. Remarkably, Smad2 knock-down also overrides the ability of adult rat myelin to inhibit axonal growth. Collectively, our findings define a novel function for Smad2 in regulation of the Cdh1-APC/SnoN cell-intrinsic pathway of axonal morphogenesis, and suggest that inhibition of Smad signaling may hold therapeutic potential in stimulating axonal growth after injury in the CNS.


Assuntos
Axônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad2/fisiologia , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Diferenciação Celular/fisiologia , Córtex Cerebelar/crescimento & desenvolvimento , Morfogênese/fisiologia , Ratos , Ratos Long-Evans
18.
Bio Protoc ; 9(22): e3436, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654932

RESUMO

In the nervous system of vertebrates, nerve impulse propagation is accelerated by the ensheathment of neuronal axons with myelin. Myelin sheaths are molecularly specialized, lipid-rich plasma membrane extensions of Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system (CNS). To visualize myelinated nerve fibers and to allow for the morphological analyses of myelin in the brain and the spinal cord, an efficient method for silver impregnation of myelin has originally been developed by Ferenc Gallyas in 1979, referred to as Gallyas silver impregnation. Gallyas' method is based on the agyrophilic characteristic of myelin to form and bind silver particles, while this process is suppressed in tissues other than myelin. The silver particles are finally enhanced in a developing step ("physical developer"). The main advantage of this method is that it efficiently visualizes both large myelinated fiber tracts and individual myelinated axons. Here we provide our laboratory protocol that is suitable for paraffin embedded sections and the use of light microscopy based on Gallyas' original protocol and subsequent modifications by Pistorio and colleagues.

19.
J Neurosci ; 27(37): 10037-46, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17855618

RESUMO

Postsynaptic morphogenesis of dendrites is essential for the establishment of neural connectivity in the brain, but the mechanisms that govern postsynaptic dendritic differentiation remain poorly understood. Sumoylation of the transcription factor myocyte enhancer factor 2A (MEF2A) promotes the differentiation of postsynaptic granule neuron dendritic claws in the cerebellar cortex. Here, we identify the protein PIASx as a MEF2 SUMO E3 ligase that represses MEF2-dependent transcription in neurons. Gain-of-function and genetic knockdown experiments in rat cerebellar slices and in the postnatal cerebellum in vivo reveal that PIASx drives the differentiation of granule neuron dendritic claws in the cerebellar cortex. MEF2A knockdown suppresses PIASx-induced dendritic claw differentiation, and expression of sumoylated MEF2A reverses PIASx knockdown-induced loss of dendritic claws. These findings define the PIASx-MEF2 sumoylation signaling link as a key mechanism that orchestrates postsynaptic dendritic claw morphogenesis in the cerebellar cortex and suggest novel functions for SUMO E3 ligases in brain development and plasticity.


Assuntos
Dendritos/enzimologia , Proteínas de Domínio MADS/fisiologia , Morfogênese/fisiologia , Fatores de Regulação Miogênica/fisiologia , Proteínas Inibidoras de STAT Ativados/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Dendritos/fisiologia , Humanos , Proteínas de Domínio MADS/deficiência , Proteínas de Domínio MADS/genética , Fatores de Transcrição MEF2 , Morfogênese/genética , Fatores de Regulação Miogênica/genética , Proteínas Inibidoras de STAT Ativados/deficiência , Proteínas Inibidoras de STAT Ativados/genética , Ratos , Ratos Long-Evans , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sinapses/enzimologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
20.
Trends Neurosci ; 28(11): 596-601, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16168498

RESUMO

Nearly ten years after its discovery as a crucial cell-cycle-regulated ubiquitin ligase, the anaphase-promoting complex (APC) is making a debut in neurobiology. During the past year, some of the mystery surrounding a potential function for APC in the brain has been unveiled. Recent studies have defined novel roles for APC in the regulation of axonal growth and patterning, as well as in synaptic development and function. With this strong beginning for APC in neurobiology, the months and years to come are likely to bring many more insights into how neuronal APC contributes to biological processes in brain development and disease.


Assuntos
Ciclo Celular/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Axônios/metabolismo , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Proliferação de Células , Mitose/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA