RESUMO
The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1ß production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.
Assuntos
Interleucina-4/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Western Blotting , Linhagem Celular , Elementos Facilitadores Genéticos , Citometria de Fluxo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Citometria de Varredura a Laser , Lipopolissacarídeos/farmacologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Piroptose/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
The concept of tissue-specific gene expression posits that lineage-determining transcription factors (LDTFs) determine the open chromatin profile of a cell via collaborative binding, providing molecular beacons to signal-dependent transcription factors (SDTFs). However, the guiding principles of LDTF binding, chromatin accessibility and enhancer activity have not yet been systematically evaluated. We sought to study these features of the macrophage genome by the combination of experimental (ChIP-seq, ATAC-seq and GRO-seq) and computational approaches. We show that Random Forest and Support Vector Regression machine learning methods can accurately predict chromatin accessibility using the binding patterns of the LDTF PU.1 and four other key TFs of macrophages (IRF8, JUNB, CEBPA and RUNX1). Any of these TFs alone were not sufficient to predict open chromatin, indicating that TF binding is widespread at closed or weakly opened chromatin regions. Analysis of the PU.1 cistrome revealed that two-thirds of PU.1 binding occurs at low accessible chromatin. We termed these sites labelled regulatory elements (LREs), which may represent a dormant state of a future enhancer and contribute to macrophage cellular plasticity. Collectively, our work demonstrates the existence of LREs occupied by various key TFs, regulating specific gene expression programs triggered by divergent macrophage polarizing stimuli.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Macrófagos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Regulação da Expressão Gênica/fisiologia , Genoma , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Coloração e Rotulagem/métodos , Ativação Transcricional/fisiologiaRESUMO
Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.
RESUMO
BACKGROUND: ChIP-seq provides a wealth of information on the approximate location of DNA-binding proteins genome-wide. It is known that the targeted motifs in most cases can be found at the peak centers. A high resolution mapping of ChIP-seq peaks could in principle allow the fine mapping of the protein constituents within protein complexes, but the current ChIP-seq analysis pipelines do not target the basepair resolution strand specific mapping of peak summits. RESULTS: The approach proposed here is based on i) locating regions that are bound by a sufficient number of proteins constituting a complex; ii) determining the position of the underlying motif using either a direct or a de novo motif search approach; and iii) determining the exact location of the peak summits with respect to the binding motif in a strand specific manner. We applied this method for analyzing the CTCF/cohesin complex, which holds together DNA loops. The relative positions of the constituents of the complex were determined with one-basepair estimated accuracy. Mapping the positions on a 3D model of DNA made it possible to deduce the approximate local topology of the complex that allowed us to predict how the CTCF/cohesin complex locks the DNA loops. As the positioning of the proteins was not compatible with previous models of loop closure, we proposed a plausible "double embrace" model in which the DNA loop is held together by two adjacent cohesin rings in such a way that the ring anchored by CTCF to one DNA duplex encircles the other DNA double helix and vice versa. CONCLUSIONS: A motif-centered, strand specific analysis of ChIP-seq data improves the accuracy of determining peak positions. If a genome contains a large number of binding sites for a given protein complex, such as transcription factor heterodimers or transcription factor/cofactor complexes, the relative position of the constituent proteins on the DNA can be established with an accuracy that allow one to deduce the local topology of the protein complex. The proposed high resolution mapping approach of ChIP-seq data is applicable for detecting the contact topology of DNA-binding protein complexes.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Análise de Sequência de DNA , CoesinasRESUMO
ChIP-seq reveals genomic regions where proteins, e.g. transcription factors (TFs) interact with DNA. A substantial fraction of these regions, however, do not contain the cognate binding site for the TF of interest. This phenomenon might be explained by protein-protein interactions and co-precipitation of interacting gene regulatory elements. We uniformly processed 3727 human ChIP-seq data sets and determined the cistrome of 292 TFs, as well as the distances between the TF binding motif centers and the ChIP-seq peak summits. ChIPSummitDB enables the analysis of ChIP-seq data using multiple approaches. The 292 cistromes and corresponding ChIP-seq peak sets can be browsed in GenomeView. Overlapping SNPs can be inspected in dbSNPView. Most importantly, the MotifView and PairShiftView pages show the average distance between motif centers and overlapping ChIP-seq peak summits and distance distributions thereof, respectively. In addition to providing a comprehensive human TF binding site collection, the ChIPSummitDB database and web interface allows for the examination of the topological arrangement of TF complexes genome-wide. ChIPSummitDB is freely accessible at http://summit.med.unideb.hu/summitdb/. The database will be regularly updated and extended with the newly available human and mouse ChIP-seq data sets.
Assuntos
Sítios de Ligação/genética , Sequenciamento de Cromatina por Imunoprecipitação , Análise de Sequência de DNA , Fatores de Transcrição , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligação Proteica/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Glioblastoma is the most common malignant central nervous system tumor. Patient outcome remains poor despite the development of therapy and increased understanding of the disease in the past decades. Glioma cells invade the peritumoral brain, which results in inevitable tumor recurrence. Previous studies have demonstrated that the extracellular matrix (ECM) is altered in gliomas and serves a major role in glioma invasion. The present study focuses on differences in the ECM composition of tumors in patients with poor and improved prognosis. The mRNA and protein expression of 16 invasion-associated ECM molecules was determined using reverse trascription-quantitiative polymerase chain reaction and immunohistochemistry, respectively. Clinical factors of patients with different prognoses was also analyzed. It was determined that age and postoperative Karnofsky performance score were associated with patient survival. Furthermore, Fms-related tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR3), murine double minute 2 (MDM2) and matrix metallopeptidase 2 (MMP2) mRNA levels were significantly different between the two prognostic groups. Additionally, brevican, cluster of differentiation 44, hyaluronan mediated motility receptor, integrin-αV and -ß1, and MDM2 protein expression were indicated to be significantly different in immunohistochemistry slides. Using the expression profile, including the invasion spectrum of the samples, it was possible to identify the prognostic group of the sample with high efficacy, particularly in cases with poor prognosis. In conclusion, it was determined that ECM components exhibit different expression levels in tumors with different prognoses and thus the invasion spectrum can be used as a prognostic factor in glioblastoma.
RESUMO
MicroRNAs are important components of the post-transcriptional fine-tuning of macrophage gene expression in physiological and pathological conditions. However, the mechanistic underpinnings and the cis-acting genomic factors of how macrophage polarizing signals induce miRNA expression changes are not well characterized. Therefore, we systematically evaluated the transcriptional basis underlying the inflammation-mediated regulation of macrophage microRNome using the combination of different next generation sequencing datasets. We investigated the LPS-induced expression changes at mature miRNA and pri-miRNA levels in mouse macrophages utilizing a small RNA-seq method and publicly available GRO-seq dataset, respectively. Next, we identified an enhancer set associated with LPS-responsive pri-miRNAs based on publicly available H3K4 mono-methylation-specific ChIP-seq and GRO-seq datasets. This enhancer set was further characterized by the combination of publicly available ChIP and ATAC-seq datasets. Finally, direct interactions between the miR-155-coding genomic region and its distal regulatory elements were identified using a 3C-seq approach. Our analysis revealed 15 robustly LPS-regulated miRNAs at the transcriptional level. In addition, we found that these miRNA genes are associated with an inflammation-responsive enhancer network. Based on NFκB-p65 and JunB transcription factor binding, we showed two distinct enhancer subsets associated with LPS-activated miRNAs that possess distinct epigenetic characteristics and LPS-responsiveness. Finally, our 3C-seq analysis revealed the LPS-induced extensive reorganization of the pri-miR-155-associated functional chromatin domain as well as chromatin loop formation between LPS-responsive enhancers and the promoter region. Our genomic approach successfully combines various genome-wide datasets and allows the identification of the putative regulatory elements controlling miRNA expression in classically activated macrophages.
Assuntos
Redes Reguladoras de Genes/genética , Inflamação/genética , MicroRNAs/genética , Transcrição Gênica , Animais , Cromatina/efeitos dos fármacos , Cromatina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fator de Transcrição RelA/genéticaRESUMO
Peritumoral infiltration is characteristic of astrocytomas even in low-grade tumors. Tumor cells migrate to neighbouring tissue and cause recurrence. The extracellular matrix (ECM) plays a role in tumor invasion; expression levels of its components' have been linked to tumor invasion. This study determines the mRNA and protein expression of 20 invasion-related ECM components by examining non-tumor brain; grade I-II-III astrocytoma and glioblastoma samples. Expression levels were measured by QRT-PCR and mass-spectroscopy. The connection between the expression pattern and tumor grade is statistically analyzed. During the analysis of data, key molecules (brevican, cadherin-12, fibronectin and integrin-ß1) correlating the most with tumor grade were selected. While the mRNA level of brevican, ErbB2, fibronectin, integrin-ß1 and versican discriminates low-grade from high-grade gliomas, of proteins RHAMM, integrin-α1 and MMP2 seems important. The expression pattern was found to be distinctive for tumor grade, as statistical classifiers are capable of identifying an unknown sample's grade using them. Furthermore, normal brain and glioma expression patterns, along with low-grade astrocytoma and glioblastoma samples, differ the most. Determining the invasion-related molecules' expression profile provides extra information regarding the tumor's clinical behavior. Additionally, identifying molecules playing a key role in glioma invasion could uncover potential therapeutic targets in the future.
Assuntos
Astrocitoma/metabolismo , Astrocitoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Astrocitoma/genética , Biomarcadores Tumorais/genética , Encéfalo/patologia , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Gradação de Tumores , Invasividade Neoplásica , Prognóstico , RNA Mensageiro/genéticaRESUMO
Macrophages are able to differentiate into classically polarized (M1) or alternatively polarized (M2) states upon encountering pro-inflammatory cytokines such as interferon (IFN) γ or anti-inflammatory cytokines such as interleukin (IL) -4/IL-13, respectively. Moreover, macrophages are known to regulate lipid metabolism via multiple members of the nuclear hormone receptor family, including the retinoid X receptors (RXR). It has been also documented that cytokines are able to modulate macrophage responses to lipid signals but the nature of these interactions and the underlying mechanisms of these processes especially at the level of the chromatinized genome are not well understood. Previous work from our laboratory suggested that STAT6 is a facilitator of nuclear receptor mediated transcriptional activity acting at the genome level. This prompted us to investigate genome-wide DNA binding events and the development of cistromes in human CD14+ monocyte-derived macrophages upon exposure to IL-4. We determined the impact of IL-4 on the PU.1, RXR and STAT6 cistromes within the active enhancer regions marked by H3K27-acetylation using chromatin immunoprecipitation followed by deep sequencing and integrated bioinformatics analyses. We found that about 2/3rd of the IL-4 induced STAT6 peaks co-localized with RXR peaks. These STAT6/RXR co-peaks differed at least in part from the non-overlapping RXR peaks regarding the most enriched de novo transcription factor binding motifs. Interestingly, RXR-binding was not regulated at the STAT6/RXR co-bound enhancers following IL-4 stimulation, but differential enhancer interactions were observed between the IL-4/STAT6 and RXR signaling pathways acting in a gene selective manner. Our results suggest that there is a novel, so far uncharacterized cistromic crosstalk between RXR and STAT6 that is likely to contribute to the formation of the active enhancer repertoire, transcriptome and differential signal-specific gene regulation of polarized macrophages.
Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Monócitos/metabolismo , Receptores X de Retinoides/metabolismo , Fator de Transcrição STAT6/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Interleucina-4/metabolismo , Macrófagos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transativadores/metabolismoRESUMO
Background Glioblastoma multiforme (GBM) is the most common malignant disease of the central nervous system. Its prognosis is unfavorable, and the median overall survival of patients is 16 to 24 months. The main cause of the poor survival data are the extensive invasion of cancer cells to the neighboring parenchyma, thus leading to inevitable local recurrence. The extracellular matrix (ECM) is a known factor in tumor invasion, and differences in the ECM of nontumor brain and glioblastoma has been proven. Methods In this research, 20 invasion-related expressions of ECM components were determined in 26 GBM flash-frozen samples using quantitative reverse transcription-polymerase chain reaction and proteomic measurements. Expression data were then set against the survival data of the patients. Results Significant alterations between groups with different survival rates could not be established in the individual evaluation of the expression level of the selected molecules. However, statistical analysis of the expression pattern of invasion-related molecules revealed a correlation with prognosis. The positive predictive values of the messenger RNA (mRNA) and the proteomic expression studies were 0.85 and 0.89, respectively. The receiver operation characteristic value was 0.775 for the mRNA expression data and 0.875 for the protein expression data. Furthermore, a group of molecules, including brevican, cadherin-12, integrin ß1, integrin α3, laminin α4, and laminin ß1, that play a prominent role in invasion were identified. Conclusions Joint assessment of the expression of invasion-related molecules provides a specific invasion spectrum of the tumor that correlates with the survival of glioblastoma patients. Using statistical classifiers enables the adoption of an invasion spectrum as a considerably accurate prognostic factor while gaining predictive information on potential molecular oncotherapeutic targets at the same time.
Assuntos
Neoplasias Encefálicas/metabolismo , Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Brevicam/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/metabolismo , Intervalo Livre de Doença , Matriz Extracelular/patologia , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Cadeias alfa de Integrinas/metabolismo , Cadeias beta de Integrinas/metabolismo , Laminina/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de SobrevidaRESUMO
OBJECTIVE: The effectiveness of therapy of intracerebral neoplasms is mainly influenced by the invasive behaviour of the tumour. The peritumoral invasion depends on the interaction between the tumour cells and the extracellular matrix (ECM) of the surrounding brain. The invading tumour cells induce change in the activity of proteases, synthases and expression of ECM-components. These alterations in the peritumoral ECM are in connection to the highly different invasiveness of gliomas and metastatic brain tumours. To understand the fairly modified invasive potential of anaplastic intracerebral tumours of different origin, the effect of tumour on the peritumoral ECM and alterations of invasion related ECM components in the peritumoral brain were evaluated. METHODS: For this reason the mRNA expression of 19 invasion-related molecules by quantitative reverse transcriptase polymerase chain reaction was determined in normal brain tissue (Norm), in the peritumoral brain tissue of glioblastoma (peri-GBM) and of intracerebral adenocarcinoma metastasis (peri-Met). To evaluate the translational expression of the investigated molecules protein levels were determined by targeted proteomic methods. RESULTS: Establishing the invasion pattern of the investigated tissue samples 8 molecules showed concordant difference at mRNA and protein levels in the peri-GBM and peri-Met, 11 molecules in the peri-Met and normal brain and 12 in the peri-GBM and normal brain comparison. CONCLUSION: Our results bring some ECM molecules into focus that probably play key role in arresting tumour cell invasion around the metastatic tumour, and also in the lack of impeding tumour cell migration in case of glioblastoma.
Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Expressão Gênica , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Biological therapies have been introduced for the treatment of chronic inflammatory diseases including rheumatoid arthritis (RA) and Crohn's disease (CD). The efficacy of biologics differs from patient to patient. Moreover these therapies are rather expensive, therefore treatment of primary non-responders should be avoided. METHOD: We addressed this issue by combining gene expression profiling and biostatistical approaches. We performed peripheral blood global gene expression profiling in order to filter the genome for target genes in cohorts of 20 CD and 19 RA patients. Then RT-quantitative PCR validation was performed, followed by multivariate analyses of genes in independent cohorts of 20 CD and 15 RA patients, in order to identify sets ofinterrelated genes that can separate responders from non-responders to the humanized chimeric anti-TNFalpha antibody infliximab at baseline. RESULTS: Gene panels separating responders from non-responders were identified using leave-one-out cross-validation test, and a pool of genes that should be tested on larger cohorts was created in both conditions. CONCLUSIONS: Our data show that peripheral blood gene expression profiles are suitable for determining gene panels with high discriminatory power to differentiate responders from non-responders in infliximab therapy at baseline in CD and RA, which could be cross-validated successfully. Biostatistical analysis of peripheral blood gene expression data leads to the identification of gene panels that can help predict responsiveness of therapy and support the clinical decision-making process.