Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470058

RESUMO

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Vírus da Influenza A , Pulmão , Proteólise , Serina Endopeptidases , Animais , Cães , Humanos , Enzima de Conversão de Angiotensina 2/deficiência , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Biocatálise , Linhagem Celular , Furina/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/metabolismo , Pulmão/citologia , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Replicação Viral
2.
Arch Pharm (Weinheim) ; : e2400250, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809037

RESUMO

Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic  d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.

3.
Arch Pharm (Weinheim) ; 356(4): e2200518, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36480352

RESUMO

Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Ligantes , Proteínas não Estruturais Virais , Conformação Proteica , Relação Estrutura-Atividade , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Serina Endopeptidases/farmacologia , Termodinâmica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
4.
Anal Biochem ; 655: 114836, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964735

RESUMO

Proprotein convertases (PCs) are involved in the pathogenesis of various diseases, making them promising drug targets. Most assays for PCs have been performed with few standard substrates, regardless of differences in cleavage efficiencies. Derived from studies on substrate-analogue inhibitors, 11 novel substrates were synthesized and characterized with five PCs. H-Arg-Arg-Tle-Lys-Arg-AMC is the most efficiently cleaved furin substrate based on its kcat/KM value. Due to its higher kcat value, acetyl-Arg-Arg-Tle-Arg-Arg-AMC was selected for further measurements to demonstrate the benefit of this improved substrate. Compared to our standard conditions, its use allowed a 10-fold reduction of the furin concentration, which enabled Ki value determinations of previously described tight-binding inhibitors under classical conditions. Under these circumstances, a slow-binding behavior was observed for the first time with inhibitor MI-1148. In addition to furin, four additional PCs were used to characterize these substrates. The most efficiently cleaved PC1/3 substrate was acetyl-Arg-Arg-Arg-Tle-Lys-Arg-AMC. The highest kcat/KM values for PC2 and PC7 were found for the N-terminally unprotected analogue of this substrate, although other substrates possess higher kcat values. The highest efficiency for PC5/6A was observed for the substrate acetyl-Arg-Arg-Tle-Lys-Arg-AMC. In summary, we have identified new substrates for furin, PC1/3, PC2, and PC7 suitable for improved enzyme-kinetic measurements.


Assuntos
Furina , Pró-Proteína Convertases , Sequência de Aminoácidos , Carbamatos , Corantes Fluorescentes , Oligopeptídeos , Proteínas , Subtilisinas/metabolismo
5.
J Biol Chem ; 295(33): 11388-11407, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32303635

RESUMO

Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza B/fisiologia , Influenza Humana/enzimologia , Infecções por Orthomyxoviridae/enzimologia , Peptídeo Hidrolases/metabolismo , Ativação Viral , Animais , Linhagem Celular , Cães , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Influenza Humana/virologia , Pulmão/enzimologia , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , Peptídeo Hidrolases/genética , Inibidores de Proteases/farmacologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Ativação Viral/efeitos dos fármacos
6.
Antimicrob Agents Chemother ; 65(8): e0030021, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33972249

RESUMO

RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).


Assuntos
Ribonuclease P , Infecções Estafilocócicas , Bacillus subtilis/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , RNA Bacteriano , Ribonuclease P/metabolismo , Staphylococcus aureus/genética
7.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32907974

RESUMO

The mumps virus (MuV) fusion protein (F) plays a crucial role for the entry process and spread of infection by mediating fusion between viral and cellular membranes as well as between infected and neighboring cells, respectively. The fusogenicity of MuV differs depending on the strain and might correlate with the virulence; however, it is unclear which mechanisms contribute to the differentiated fusogenicity. The cleavage motif of MuV F is highly conserved among all strains, except the amino acid residue at position 8 (P8) that shows a certain variability with a total of four amino acid variants (leucine [L], proline [P], serine [S], and threonine [T]). We demonstrate that P8 affects the proteolytic processing and the fusogenicity of MuV F. The presence of L or S at P8 resulted in a slower proteolysis of MuV F by furin and a reduced ability to mediate cell-cell fusion. However, virus-cell fusion was more efficient for F proteins harboring L or S at P8, suggesting that P8 contributes to the mechanism of viral spread: P and T enable a rapid spread of infection by cell-to-cell fusion, whereas viruses harboring L or S at P8 spread preferentially by the release of infectious viral particles. Our study provides novel insights into the fusogenicity of MuV and its influence on the mechanisms of virus spread within infected tissues. Assuming a correlation between MuV fusogenicity and virulence, sequence information on the amino acid residue at P8 might be helpful to estimate the virulence of circulating and emerging strains.IMPORTANCE Mumps virus (MuV) is the causative agent of the highly infectious disease mumps. Mumps is mainly associated with mild symptoms, but severe complications such as encephalitis, meningitis, or orchitis can also occur. There is evidence that the virulence of different MuV strains and variants might correlate with the ability of the fusion protein (F) to mediate cell-to-cell fusion. However, the relation between virulence and fusogenicity or the mechanisms responsible for the varied fusogenicity of different MuV strains are incompletely understood. Here, we focused on the amino acid residue at position 8 (P8) of the proteolytic cleavage site of MuV F, because this amino acid residue shows a striking variability depending on the genotype of MuV. The P8 residue has a significant effect on the proteolytic processing and fusogenicity of MuV F and might thereby determine the route of viral spread within infected tissues.


Assuntos
Aminoácidos/química , Vírus da Caxumba/metabolismo , Proteólise , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Animais , Fusão Celular , Chlorocebus aethiops , Furina/metabolismo , Genótipo , Células HEK293 , Humanos , Cinética , Caxumba/virologia , Vírus da Caxumba/genética , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas Virais de Fusão/genética , Internalização do Vírus
8.
J Enzyme Inhib Med Chem ; 36(1): 659-668, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33641565

RESUMO

Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 µM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 µM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 µM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fenilalanina/farmacologia , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/enzimologia , Humanos , Peróxido de Hidrogênio/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Ocludina/genética , Ocludina/metabolismo , Oxirredução/efeitos dos fármacos , Fenilalanina/análogos & derivados , Cultura Primária de Células , Serina Endopeptidases/genética
9.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477282

RESUMO

The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1-Cys37) and the flexible C-terminal part (Arg38-Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure-activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.


Assuntos
Fator XIIIa/antagonistas & inibidores , Espectroscopia de Ressonância Magnética/métodos , Proteínas e Peptídeos Salivares/farmacologia , Sequência de Aminoácidos , Animais , Dissulfetos/química , Fator XIIIa/metabolismo , Fibrinolíticos/farmacologia , Humanos , Isomerismo , Sanguessugas/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Relação Estrutura-Atividade
10.
Proc Natl Acad Sci U S A ; 113(40): 11196-11201, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647913

RESUMO

Proprotein convertases (PCs) are highly specific proteases required for the proteolytic modification of many secreted proteins. An unbalanced activity of these enzymes is connected to pathologies like cancer, atherosclerosis, hypercholesterolaemia, and infectious diseases. Novel protein crystallographic structures of the prototypical PC family member furin in different functional states were determined to 1.8-2.0 Å. These, together with biochemical data and modeling by molecular dynamics calculations, suggest essential elements underlying its unusually high substrate specificity. Furin shows a complex activation mechanism and exists in at least four defined states: (i) the "off state," incompatible with substrate binding as seen in the unliganded enzyme; (ii) the active "on state" seen in inhibitor-bound furin; and the respective (iii) calcium-free and (iv) calcium-bound forms. The transition from the off to the on state is triggered by ligand binding at subsites S1 to S4 and appears to underlie the preferential recognition of the four-residue sequence motif of furin. The molecular dynamics simulations of the four structural states reflect the experimental observations in general and provide approximations of the respective stabilities. Ligation by calcium at the PC-specific binding site II influences the active-site geometry and determines the rotamer state of the oxyanion hole-forming Asn295, and thus adds a second level of the activity modulation of furin. The described crystal forms and the observations of different defined functional states may foster the development of new tools and strategies for pharmacological intervention targeting furin.


Assuntos
Furina/química , Furina/metabolismo , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Furina/antagonistas & inibidores , Humanos , Ligantes , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Eletricidade Estática , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Biochemistry ; 57(6): 925-934, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29314830

RESUMO

The proprotein convertase furin is a highly specific serine protease modifying and thereby activating proteins in the secretory pathway by proteolytic cleavage. Its substrates are involved in many diseases, including cancer and infections caused by bacteria and viruses. Understanding furin's substrate specificity is crucially important for the development of pharmacologically applicable inhibitors. Using protein X-ray crystallography, we investigated the extended substrate binding site of furin in complex with three peptide-derived inhibitors at up to 1.9 Å resolution. The structure of the protease bound with a hexapeptide inhibitor revealed molecular details of its S6 pocket, which remained completely unknown so far. The arginine residue at P6 induced an unexpected turnlike conformation of the inhibitor backbone, which is stabilized by intra- and intermolecular H-bonds. In addition, we confirmed the binding of arginine to the previously proposed S5 pocket (S51). An alternative S5 site (S52) could be utilized by shorter side chains as demonstrated for a 4-aminomethyl-phenylacetyl residue, which shows steric properties similar to those of a lysine side chain. Interestingly, we also observed binding of a peptide with citrulline at P4 substituting for the highly conserved arginine. The structural data might indicate an unusual protonation state of Asp264 maintaining the interaction with uncharged citrulline. The herein identified molecular interaction sites at P5 and P6 can be utilized to improve next-generation furin inhibitors. Our data will also help to predict furin substrates more precisely on the basis of the additional specificity determinants observed for P5 and P6.


Assuntos
Furina/química , Sítios de Ligação , Cristalografia por Raios X , Furina/antagonistas & inibidores , Furina/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Especificidade por Substrato
12.
Chemistry ; 23(22): 5205-5209, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28370501

RESUMO

Activity-based probes are compounds that exclusively form covalent bonds with active enzymes. They can be utilized to profile enzyme activities in vivo, to identify target enzymes and to characterize their function. The design of a new activity-based probe for matriptase, a member of the type II transmembrane serine proteases, is based on linker-connected bis-benzguanidines. An amino acid, introduced as linker, bears the coumarin fluorophore. Moreover, an incorporated phosphonate allows for a covalent interaction with the active-site serine. The resulting irreversible mode of action was demonstrated, leading to enzyme inactivation and, simultaneously, to a fluorescence labeling of matriptase. The ten-step synthetic approach to a coumarin-labeled bis-benzguanidine and its evaluation as activity-based probe for matriptase based on in-gel fluorescence and fluorescence HPLC is reported. HPLC fluorescence detection as a new application for activity-based probes for proteases is demonstrated herein for the first time.


Assuntos
Corantes Fluorescentes/química , Serina Endopeptidases/química , Serina Proteases/química , Serina Proteases/metabolismo , Domínio Catalítico , Serina Endopeptidases/metabolismo
13.
Cell Microbiol ; 18(3): 340-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332529

RESUMO

Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.


Assuntos
Vírus da Doença de Borna/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Astrócitos/virologia , Benzamidinas/farmacologia , Vírus da Doença de Borna/metabolismo , Encéfalo/citologia , Encéfalo/virologia , Fusão Celular , Células Cultivadas , Chlorocebus aethiops , Cães , Furina/antagonistas & inibidores , Células Madin Darby de Rim Canino/virologia , Oligopeptídeos/farmacologia , Ratos Endogâmicos Lew , Células Vero/virologia
14.
J Enzyme Inhib Med Chem ; 32(1): 712-721, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28385094

RESUMO

West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Furina/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Vírus da Dengue/enzimologia , Vírus da Dengue/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Furina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/crescimento & desenvolvimento
15.
Angew Chem Int Ed Engl ; 56(13): 3718-3722, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28199769

RESUMO

Protein-templated reactions enable the target-guided formation of protein ligands from reactive fragments, ideally with no background reaction. Herein, we investigate the templated formation of amides. A nucleophilic fragment that binds to the coagulation factor Xa was incubated with the protein and thirteen differentially activated dipeptides. The protein induced a non-catalytic templated reaction for the phenyl and trifluoroethyl esters; the latter was shown to be a completely background-free reaction. Starting from two fragments with millimolar affinity, a 29 nm superadditive inhibitor of factor Xa was obtained. The fragment ligation reaction was detected with high sensitivity by an enzyme activity assay and by mass spectrometry. The reaction progress and autoinhibition of the templated reaction by the formed ligation product were determined, and the structure of the protein-inhibitor complex was elucidated.


Assuntos
Amidas/química , Dipeptídeos/química , Inibidores do Fator Xa/química , Fator Xa/química , Amidas/síntese química , Amidas/farmacologia , Benzamidinas/síntese química , Benzamidinas/química , Benzamidinas/farmacologia , Técnicas de Química Sintética/métodos , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Descoberta de Drogas , Esterificação , Fator Xa/metabolismo , Inibidores do Fator Xa/síntese química , Inibidores do Fator Xa/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular
16.
Chemistry ; 22(2): 610-25, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26625703

RESUMO

In the absence of X-ray data, the exploration of compound binding modes continues to be a challenging task. For structure-based design, specific features of active sites in different targets play a major role in rationalizing ligand binding characteristics. For example, dibasic compounds have been reported as potent inhibitors of various trypsin-like serine proteases, the active sites of which contain several binding pockets that can be targeted by cationic moieties. This results in several possible orientations within the active site, complicating the binding mode prediction of such compounds by docking tools. Therefore, we introduced symmetry in bi- and tribasic compounds to reduce conformational space in docking calculations and to simplify binding mode selection by limiting the number of possible pocket occupations. Asymmetric bisbenzamidines were used as starting points for a multistage and structure-guided optimization. A series of 24 final compounds with either two or three benzamidine substructures was ultimately synthesized and evaluated as inhibitors of five serine proteases, leading to potent symmetric inhibitors for the pharmaceutical drug targets matriptase, matriptase-2, thrombin and factor Xa. This study underlines the relevance of ligand symmetry for chemical biology.


Assuntos
Proteínas de Membrana/química , Peptidomiméticos/química , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Trombina/química , Benzamidinas/síntese química , Benzamidinas/química , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Ligação Proteica , Serina Endopeptidases/metabolismo
17.
J Enzyme Inhib Med Chem ; 31(5): 736-41, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26118419

RESUMO

The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Dextranos/química , Dextranos/metabolismo , Impedância Elétrica , Ativação Enzimática/efeitos dos fármacos , Fluorescência , Estrutura Molecular , Serina Endopeptidases/química , Sulfonas/farmacologia , Suínos
18.
J Enzyme Inhib Med Chem ; 31(sup1): 89-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168215

RESUMO

The type II transmembrane serine protease matriptase is a potential target for anticancer therapy and might be involved in cartilage degradation in osteoarthritis or inflammatory skin disorders. Starting from previously described nonspecific thrombin and factor Xa inhibitors we have prepared new noncovalent substrate-analogs with superior potency against matriptase. The most suitable compound 35 (H-d-hTyr-Ala-4-amidinobenzylamide) binds to matriptase with an inhibition constant of 26 nM and has more than 10-fold reduced activity against thrombin and factor Xa. The crystal structure of inhibitor 35 was determined in the surrogate protease trypsin, the obtained complex was used to model the binding mode of inhibitor 35 in the active site of matriptase. The methylene insertion in d-hTyr and d-hPhe increases the flexibility of the P3 side chain compared to their d-Phe analogs, which enables an improved binding of these inhibitors in the well-defined S3/4 pocket of matriptase. Inhibitor 35 can be used for further biochemical studies with matriptase.


Assuntos
Inibidores Enzimáticos/farmacologia , Fator Xa/metabolismo , Serina Endopeptidases/metabolismo , Trombina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores do Fator Xa/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Trombina/metabolismo
19.
J Enzyme Inhib Med Chem ; 31(sup2): 123-129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27277342

RESUMO

The transmembrane serine protease, TMPRSS2 is an important target in the treatment of seasonal influenza infections and contributes to prostate carcinogenesis and metastasis. In this study, the effect of the synthetic TMPRSS2 inhibitor I-432 on jejunal IPEC-J2 cell monolayers cultured on membrane inserts was characterized. Using a fluorogenic substrate, it was found that the apical addition of I-432 could suppress trypsin-like activity in the supernatants of IPEC-J2 cells. The inhibition of TMPRSS2 did not affect physiologically produced hydrogen peroxide levels in the apical and in basolateral compartments. Loss of expression of the TMPRSS2 serine protease domain (28 kDa) was also observed when cells were pre-exposed to I-432. Partial decrease in immunofluorescent signal intensities derived from the altered distribution pattern of TMPRSS2 was detected after a 48 h long incubation of IPEC-J2 cells with the inhibitor indicating the efficacy of TMPRSS2 inhibition via I-432 administration in vitro.


Assuntos
Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Estrutura Molecular , Serina Endopeptidases/isolamento & purificação , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Suínos
20.
Biochim Biophys Acta ; 1840(9): 2843-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24792574

RESUMO

BACKGROUND: The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. METHODS: Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. RESULTS AND CONCLUSIONS: We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. GENERAL SIGNIFICANCE: Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature.


Assuntos
Ligantes , Pentosiltransferases/química , Termodinâmica , Tripsina/química , Animais , Calorimetria/instrumentação , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA