Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589034

RESUMO

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Haploinsuficiência , Glioma/genética , PTEN Fosfo-Hidrolase/genética , Diester Fosfórico Hidrolases/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética
2.
J Pharmacol Exp Ther ; 391(2): 162-173, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39060165

RESUMO

Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/ß-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT: Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.


Assuntos
Analgésicos , Endocanabinoides , Dor , Transdução de Sinais , Endocanabinoides/metabolismo , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Analgésicos/uso terapêutico , Analgésicos/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Canabinoides/uso terapêutico , Canabinoides/farmacologia , Desenvolvimento de Medicamentos/métodos
3.
J Transl Med ; 22(1): 441, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730481

RESUMO

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Assuntos
Morte Celular , Células Gigantes , Interfase , Microtúbulos , Poliploidia , Humanos , Interfase/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Linhagem Celular Tumoral , Morte Celular/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Neurobiol Dis ; 180: 106099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990366

RESUMO

Evidence suggests that inhibition of α/ß hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6+/-) significantly reduced the premature lethality of Scn1a+/- mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6+/- mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a+/- pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABAAR). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABAAR currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABAAR currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.


Assuntos
Epilepsias Mioclônicas , Animais , Camundongos , Epilepsias Mioclônicas/genética , Neurônios , Ácido gama-Aminobutírico , Hidrolases/uso terapêutico , Serina , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Monoacilglicerol Lipases
5.
Eur J Neurosci ; 54(3): 4934-4952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216157

RESUMO

Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.


Assuntos
Anfetamina , Canabinoides , Corpo Estriado , Receptor CB1 de Canabinoide , Anfetamina/farmacologia , Animais , Camundongos , Camundongos Knockout , Neurônios , Receptor CB1 de Canabinoide/genética
6.
Nat Rev Neurosci ; 16(1): 30-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25524120

RESUMO

Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls--and is affected by--normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.


Assuntos
Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Endocanabinoides/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento , Animais , Encefalopatias/patologia , Humanos
7.
Mol Cell ; 48(4): 547-59, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063527

RESUMO

The mitogenic and second-messenger signals that promote cell proliferation often proceed through multienzyme complexes. The kinase-anchoring protein Gravin integrates cAMP and calcium/phospholipid signals at the plasma membrane by sequestering protein kinases A and C with G protein-coupled receptors. In this report we define a role for Gravin as a temporal organizer of phosphorylation-dependent protein-protein interactions during mitosis. Mass spectrometry, molecular, and cellular approaches show that CDK1/Cyclin B1 phosphorylates Gravin on threonine 766 to prime the recruitment of the polo-like kinase Plk1 at defined phases of mitosis. Fluorescent live-cell imaging reveals that cells depleted of Gravin exhibit mitotic defects that include protracted prometaphase and misalignment of chromosomes. Moreover, a Gravin T766A phosphosite mutant that is unable to interact with Plk1 negatively impacts cell proliferation. In situ detection of phospho-T766 Gravin in biopsy sections of human glioblastomas suggests that this phosphorylation event might identify malignant neoplasms.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Humanos , Camundongos , Mitose , Fosforilação , Ligação Proteica , Células Tumorais Cultivadas , Quinase 1 Polo-Like
8.
Proc Natl Acad Sci U S A ; 114(42): 11229-11234, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973916

RESUMO

Worldwide medicinal use of cannabis is rapidly escalating, despite limited evidence of its efficacy from preclinical and clinical studies. Here we show that cannabidiol (CBD) effectively reduced seizures and autistic-like social deficits in a well-validated mouse genetic model of Dravet syndrome (DS), a severe childhood epilepsy disorder caused by loss-of-function mutations in the brain voltage-gated sodium channel NaV1.1. The duration and severity of thermally induced seizures and the frequency of spontaneous seizures were substantially decreased. Treatment with lower doses of CBD also improved autistic-like social interaction deficits in DS mice. Phenotypic rescue was associated with restoration of the excitability of inhibitory interneurons in the hippocampal dentate gyrus, an important area for seizure propagation. Reduced excitability of dentate granule neurons in response to strong depolarizing stimuli was also observed. The beneficial effects of CBD on inhibitory neurotransmission were mimicked and occluded by an antagonist of GPR55, suggesting that therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor. Our results provide critical preclinical evidence supporting treatment of epilepsy and autistic-like behaviors linked to DS with CBD. We also introduce antagonism of GPR55 as a potential therapeutic approach by illustrating its beneficial effects in DS mice. Our study provides essential preclinical evidence needed to build a sound scientific basis for increased medicinal use of CBD.


Assuntos
Canabidiol/uso terapêutico , Epilepsias Mioclônicas/tratamento farmacológico , Convulsões/prevenção & controle , Animais , Compostos Azabicíclicos , Benzoatos , Canabidiol/farmacologia , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/psicologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Camundongos , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Convulsões/etiologia , Comportamento Social
9.
Glia ; 67(8): 1558-1570, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31058365

RESUMO

GPR124 is involved in embryonic development and remains expressed by select organs. The importance of GPR124 during development suggests that its aberrant expression might participate in tumor growth. Here we show that both increases and decreases in GPR124 expression in glioblastoma cells reduce cell proliferation by differentially altering the duration mitotic progression. Using mass spectrometry-based proteomics, we discovered that GPR124 interacts with ch-TOG, a known regulator of both microtubule (MT)-plus-end assembly and mitotic progression. Accordingly, changes in GPR124 expression and ch-TOG similarly affect MT assembly measured by real-time microscopy in cells. Our study describes a novel molecular interaction involving GPR124 and ch-TOG at the plasma membrane that controls glioblastoma cell proliferation by modifying MT assembly rates and controlling the progression of distinct phases of mitosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Encéfalo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade
10.
Neurobiol Dis ; 132: 104607, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31499139

RESUMO

Huntington's Disease (HD) is a fatal neurodegenerative disease characterized by severe loss of medium spiny neuron (MSN) function and striatal-dependent behaviors. We report that female HdhQ200/200 mice display an earlier onset and more robust deterioration in spontaneous locomotion and motor coordination measured at 8 months of age compared to male HdhQ200/200 mice. Remarkably, HdhQ200/200 mice of both sexes exhibit comparable impaired spontaneous locomotion and motor coordination at 10 months of age and reach moribund stage by 12 months of age, demonstrating reduced life span in this model system. Histopathological analysis revealed enhanced mutant huntingtin protein aggregation in male HdhQ200/200 striatal tissue at 8 months of age compared to female HdhQ200/200. Functional analysis of calcium dynamics in MSNs of female HdhQ200/200 mice using GCaMP6m imaging revealed elevated responses to excitatory cortical-striatal stimulation suggesting increased MSN excitability. Although there was no down-regulation of the expression of common HD biomarkers (DARPP-32, enkephalin and CB1R), we measured a sex-dependent reduction of the astrocytic glutamate transporter, GLT-1, in female HdhQ200/200 mice that was not detected in male HdhQ200/200 mice when compared to respective wild-type littermates. Our study outlines a sex-dependent rapid deterioration of striatal-dependent behaviors occurring in the HdhQ200/200 mouse line that does not involve alterations in the expression of common HD biomarkers and yet includes impaired MSN function.


Assuntos
Ataxia , Corpo Estriado/metabolismo , Transtornos Neurológicos da Marcha , Doença de Huntington/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Ataxia/genética , Ataxia/metabolismo , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/patologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Desempenho Psicomotor/fisiologia , Caracteres Sexuais
11.
J Pharmacol Exp Ther ; 360(1): 215-224, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27821713

RESUMO

Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Canabidiol/efeitos adversos , Canabidiol/farmacologia , Dano ao DNA , Glioblastoma/patologia , Células-Tronco Neurais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Camundongos , Células-Tronco Neurais/citologia , Transdução de Sinais/efeitos dos fármacos
12.
J Pharmacol Exp Ther ; 361(2): 219-228, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28196836

RESUMO

Small molecules that target the adrenergic family of G protein-coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. In this study, we report that human colon cancer cell line SW480 expresses low-density functional α1B-adrenergic receptors (ARs) as revealed by label-free dynamic mass redistribution (DMR) signaling technology and confirmed by quantitative reverse-transcriptase polymerase chain reaction analysis. Remarkably, although endogenous α1B-ARs are not detectable via either [3H]-prazosin-binding analysis or phosphoinositol hydrolysis assays, their activation leads to robust DMR and enhanced cell viability. We provide pharmacological evidence that stimulation of α1B-ARs enhances SW480 cell viability without affecting proliferation, whereas stimulating ß-ARs diminishes both viability and proliferation of SW480 cells. Our study illustrates the power of label-free DMR technology for identifying and characterizing low-density GPCRs in cells and suggests that drugs targeting both α1B- and ß-ARs may represent valuable small-molecule therapeutics for the treatment of colon cancer.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Carcinoma , Neoplasias do Colo , Receptores Adrenérgicos alfa 1 , Biofarmácia/métodos , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Descoberta de Drogas , Humanos , Receptores Adrenérgicos alfa 1/análise , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estimulação Química
13.
Pharmacol Res ; 115: 233-241, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832960

RESUMO

Indole-based compounds, such as the alkyl-indole (AI) compound WIN55212-2, activate the cannabinoid receptors, CB1 and CB2, two well-characterized G protein-coupled receptors (GPCR). Reports indicate that several indole-based cannabinoid agonists, including WIN55212-2, lack selectivity and interact with at least two additional targets: AI-sensitive GPCRs and microtubules. Studying how indole-based compounds modulate the activity of these 4 targets has been difficult as selective chemical tools were not available. Here we report the pharmacological characterization of six newly-developed indole-based compounds (ST-11, ST-23, ST-25, ST-29, ST-47 and ST-48) that exhibit distinct binding affinities at AI-sensitive receptors, cannabinoid CB1 and CB2 receptors and the colchicine site of tubulin. Several compounds exhibit some level of selectivity for AI-sensitive receptors, including ST-11 that binds AI-sensitive receptors with a Kd of 52nM and appears to have a weaker affinity for the colchicine site of tubulin (Kd=3.2µM) and does not bind CB1/CB2 receptors. Leveraging these characteristics, we show that activation of AI-sensitive receptors with ST-11 inhibits both the basal and stimulated migration of the Delayed Brain Tumor (DBT) mouse glioma cell line. Our study describes a new series of indole-based compounds that enable the pharmacological and functional differentiation of alkylindole-sensitive receptors from cannabinoid receptors and microtubules.


Assuntos
Movimento Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Animais , Benzoxazinas/farmacologia , Ligação Competitiva/fisiologia , Agonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Colchicina/metabolismo , Glioma/metabolismo , Células HEK293 , Humanos , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Tubulina (Proteína)/metabolismo
14.
Pharmacol Res ; 105: 13-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773201

RESUMO

G protein-coupled receptors (GPCRs) are essential membrane proteins that facilitate cell-to-cell communication and co-ordinate physiological processes. At least 30 human GPCRs contain a Type I PSD-95/DLG/Zo-1 (PDZ) ligand in their distal C-terminal domain; this four amino acid motif of X-[S/T]-X-[φ] sequence facilitates interactions with PDZ domain-containing proteins. Because PDZ protein interactions have profound effects on GPCR ligand pharmacology, cellular localization, signal-transduction effector coupling and duration of activity, we analyzed the importance of Type I PDZ ligands for the function of 23 full-length and PDZ-ligand truncated (ΔPDZ) human GPCRs in cultured human cells. SNAP-epitope tag polyacrylamide gel electrophoresis revealed most Type I PDZ GPCRs exist as both monomers and multimers; removal of the PDZ ligand played minimal role in multimer formation. Additionally, SNAP-cell surface staining indicated removal of the PDZ ligand had minimal effects on plasma membrane localization for most GPCRs examined. Label-free dynamic mass redistribution functional responses, however, revealed diverging effects of the PDZ ligand. While no clear trend was observed across all GPCRs tested or even within receptor families, a subset of GPCRs displayed diminished agonist efficacy in the absence of a PDZ ligand (i.e. HT2RB, ADRB1), whereas others demonstrated enhanced agonist efficacies (i.e. LPAR2, SSTR5). These results demonstrate the utility of label-free functional assays to tease apart the contributions of conserved protein interaction domains for GPCR signal-transduction coupling in cultured cells.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Ligantes , Domínios PDZ , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análise , Transdução de Sinais
15.
Glia ; 63(10): 1797-808, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25914169

RESUMO

Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2 . Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Microglia/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Benzoxazinas/farmacologia , Encéfalo/citologia , Bloqueadores dos Canais de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL10/metabolismo , AMP Cíclico/metabolismo , Citocinas/farmacologia , Dronabinol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Óxido Nítrico/metabolismo
16.
Neurobiol Dis ; 71: 140-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25134728

RESUMO

Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.


Assuntos
Corpo Estriado/patologia , Doença de Huntington/terapia , Atividade Motora/genética , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia , Potenciais de Ação/genética , Animais , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Força Muscular/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Proteínas Nucleares/genética , Receptor CB1 de Canabinoide/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Coloração pela Prata , Fatores de Tempo
17.
Prostate ; 74(11): 1107-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913716

RESUMO

BACKGROUND: The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. RESULTS: Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. CONCLUSIONS: The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors.


Assuntos
Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Transdução de Sinais/fisiologia , Análise Serial de Tecidos/métodos , Amidoidrolases/fisiologia , Teorema de Bayes , Proliferação de Células , Receptores ErbB/fisiologia , Humanos , Masculino , Glicoproteínas de Membrana/fisiologia , Prognóstico , Neoplasias da Próstata/diagnóstico , Receptor ErbB-2/fisiologia , Estudos Retrospectivos
18.
Inflammopharmacology ; 22(5): 295-303, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135301

RESUMO

Cannabinoids affect immune responses in ways that may be beneficial for autoimmune diseases. We sought to determine whether chronic Cannabis use differentially modulates a select number of immune parameters in healthy controls and individuals with multiple sclerosis (MS cases). Subjects were enrolled and consented to a single blood draw, matched for age and BMI. We measured monocyte migration isolated from each subject, as well as plasma levels of endocannabinoids and cytokines. Cases met definition of MS by international diagnostic criteria. Monocyte cell migration measured in control subjects and individuals with MS was similarly inhibited by a set ratio of phytocannabinoids. The plasma levels of CCL2 and IL17 were reduced in non-naïve cannabis users irrespective of the cohorts. We detected a significant increase in the endocannabinoid arachidonoylethanolamine (AEA) in serum from individuals with MS compared to control subjects, and no significant difference in levels of other endocannabinoids and signaling lipids irrespective of Cannabis use. Chronic Cannabis use may affect the immune response to similar extent in individuals with MS and control subjects through the ability of phytocannabinoids to reduce both monocyte migration and cytokine levels in serum. From a panel of signaling lipids, only the levels of AEA are increased in individuals with MS, irrespective of Cannabis use or not. Our results suggest that both MS cases and controls respond similarly to chronic Cannabis use with respect to the immune parameters measured in this study.


Assuntos
Canabinoides/administração & dosagem , Cannabis/química , Fumar Maconha/metabolismo , Esclerose Múltipla/imunologia , Adulto , Ácidos Araquidônicos/metabolismo , Estudos de Casos e Controles , Movimento Celular/fisiologia , Quimiocina CCL2/sangue , Estudos Transversais , Endocanabinoides/metabolismo , Feminino , Humanos , Interleucina-17/sangue , Masculino , Monócitos/metabolismo , Esclerose Múltipla/metabolismo , Alcamidas Poli-Insaturadas/metabolismo
19.
J Clin Sleep Med ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167421

RESUMO

STUDY OBJECTIVES: Cannabidiol (CBD) is increasingly used as a health supplement, though few clinical studies have demonstrated benefits. The primary objective of this study was to evaluate the effects of an oral CBD-terpene formulation on sleep physiology in individuals with insomnia. METHODS: In this double-blind, placebo-controlled, randomized clinical trial, 125 individuals with insomnia received an oral administration of CBD (300 mg) and terpenes (1 mg each of linalool, myrcene, phytol, limonene, α-terpinene, α-terpineol, α-pinene, and ß-caryophyllene) for ≥ 4 days/week over 4 weeks using a crossover design. The study medication was devoid of Δ9-tetrahydrocannabinol (Δ9-THC). The primary outcome measure was the percentage of time participants spent in the combination of slow wave sleep (SWS) and rapid eye movement (REM) sleep stages, as measured by a wrist-worn sleep-tracking device. RESULTS: This CBD-terpene regimen marginally increased the mean nightly percentage of time participants spent in SWS + REM sleep compared to the placebo [mean (SEM), 1.3% (0.60%), 95% C.I. 0.1 to 2.5%, P = 0.03]. More robust increases were observed in participants with low baseline SWS + REM sleep, as well as in day sleepers. For select participants, the increase in SWS + REM sleep averaged as much as 48 minutes/night over a four-week treatment period. This treatment had no effect on total sleep time (TST), resting heart rate or heart rate variability, and no adverse events were reported. CONCLUSIONS: Select CBD-terpene ratios may increase SWS + REM sleep in some individuals with insomnia, and may have the potential to provide a safe and efficacious alternative to over-the-counter (OTC) sleep aids and commonly prescribed sleep medications. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT05233761.

20.
Elife ; 122024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214701

RESUMO

No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.


Assuntos
Dronabinol , Hipotermia , Camundongos , Masculino , Feminino , Animais , Reflexo de Sobressalto , Gelatina/farmacologia , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA