Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Pediatr ; 23(1): 347, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430233

RESUMO

BACKGROUND: Bilirubin neurotoxicity (BN) occurs in premature infants at lower total serum bilirubin levels than term infants and causes neurodevelopmental impairment. Usual dose lipid infusions in preterm infants may increase free fatty acids sufficiently to cause bilirubin displacement from albumin, increasing passage of unbound bilirubin (UB) into the brain leading to BN and neurodevelopmental impairment not reliably identifiable in infancy. These risks may be influenced by whether cycled or continuous phototherapy is used to control bilirubin levels. OBJECTIVE: To assess differences in wave V latency measured by brainstem auditory evoked responses (BAER) at 34-36 weeks gestational age in infants born ≤ 750 g or < 27 weeks' gestational age randomized to receive usual or reduced dose lipid emulsion (half of the usual dose) irrespective of whether cycled or continuous phototherapy is administered. METHODS: Pilot factorial randomized controlled trial (RCT) of lipid dosing (usual and reduced) with treatment groups balanced between cycled or continuous phototherapy assignment. Eligible infants are born at ≤ 750 g or < 27 weeks' gestational age enrolled in the NICHD Neonatal Research Network RCT of cycled or continuous phototherapy. Infants will randomize 1:1 to reduced or usual dose lipid assignment during the first 2 weeks after birth and stratified by phototherapy assignment. Free fatty acids and UB will be measured daily using a novel probe. BAER testing will be performed at 34-36 weeks postmenstrual age or prior to discharge. Blinded neurodevelopmental assessments will be performed at 22-26 months. Intention-to-treat analyses will be performed with generalized linear mixed models with lipid dose and phototherapy assignments as random effects covariates, and assessment for interactions. Bayesian analyses will be performed as a secondary analysis. DISCUSSION: Pragmatic trials are needed to evaluate whether lipid emulsion dosing modifies the effect of phototherapy on BN. This factorial design presents a unique opportunity to evaluate both therapies and their interaction. This study aims to address basic controversial questions about the relationships between lipid administration, free fatty acids, UB, and BN. Findings suggesting a reduced lipid dose can diminish the risk of BN would support the need for a large multicenter RCT of reduced versus usual lipid dosing. TRIAL REGISTRATION: Clinical Trials.gov, NCT04584983, Registered 14 October 2020, https://clinicaltrials.gov/ct2/show/NCT04584983 Protocol version: Version 3.2 (10/5/2022).


Assuntos
Bilirrubina , Lactente Extremamente Prematuro , Lactente , Recém-Nascido , Humanos , Emulsões , Ácidos Graxos não Esterificados , Fototerapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
2.
J Neurosci ; 33(32): 13025-41, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926257

RESUMO

The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.


Assuntos
Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Anilina/metabolismo , Animais , Benzofuranos/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Cloreto de Cádmio/farmacologia , Césio/farmacologia , Cloretos/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres Cíclicos/metabolismo , Feminino , Fluoresceínas/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ouabaína/farmacologia , Potássio/metabolismo , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
3.
4.
Front Neural Circuits ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131678

RESUMO

Neuromodulatory transmitters, such as serotonin (5-HT), selectively regulate the excitability of subpopulations of cortical projection neurons to gate cortical output to specific target regions. For instance, in the mouse prelimbic cortex, 5-HT selectively excites commissurally projecting (COM) intratelencephalic neurons via activation of 5-HT2A (2A) receptors, while simultaneously inhibiting, via 5-HT1A (1A) receptors, corticofugally projecting pyramidal neurons targeting the pons. Here we characterize the physiology, morphology, and serotonergic regulation of corticoamygdalar (CAm) projection neurons in the mouse prelimbic cortex. Layer 5 CAm neurons shared a number of physiological and morphological characteristics with COM neurons, including higher input resistances, smaller HCN-channel mediated responses, and sparser dendritic arbors than corticopontine neurons. Across cortical lamina, CAm neurons also resembled COM neurons in their serotonergic modulation; focally applied 5-HT (100 µM; 1 s) generated 2A-receptor-mediated excitation, or 1A- and 2A-dependent biphasic responses, in ipsilaterally and contralaterally projecting CAm neurons. Serotonergic excitation depended on extrinsic excitatory drive, as 5-HT failed to depolarize CAm neurons from rest, but could enhance the number of action potentials generated by simulated barrages of synaptic input. Finally, using dual tracer injections, we identified double-labeled CAm/COM neurons that displayed primarily excitatory or biphasic responses to 5-HT. Overall, our findings reveal that prelimbic CAm neurons in layer 5 overlap, at least partially, with COM neurons, and that neurons projecting to either, or both targets, exhibit 2A-dependent serotonergic excitation. These results suggest that 5-HT, acting at 2A receptors, may promote cortical output to the amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Artigo em Inglês | MEDLINE | ID: mdl-29422840

RESUMO

Serotonin (5-HT) selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A) receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current), or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs). However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s) involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM) projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh) receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%), rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third ionic effector, as blockade of KV7 channels with XE991 (10 µM) reduced serotonergic excitation by ∼50% in control conditions, and by ∼30% with intracellular BAPTA present. Together, these findings demonstrate a role for at least three distinct ionic effectors, including KV7 channels, a calcium-sensitive and calcium-permeable non-specific cation conductance, and the calcium-dependent ADP conductance, in mediating serotonergic excitation of COM neurons.


Assuntos
Corpo Caloso/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Serotonina/metabolismo , Acetilcolina/metabolismo , Animais , Cálcio/metabolismo , Corpo Caloso/citologia , Corpo Caloso/efeitos dos fármacos , Feminino , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurotransmissores/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Muscarínicos/metabolismo , Técnicas de Cultura de Tecidos
6.
Artigo em Inglês | MEDLINE | ID: mdl-25206322

RESUMO

Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in "COM-excited" neurons), or following brief 1A-mediated inhibition (in "COM-biphasic" neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired with subthreshold depolarizing input, hyperpolarized CPn and COM-biphasic L5PNs and failed to promote AP generation in COM-excited L5PNs. Conversely, when paired with suprathreshold excitatory drive generating multiple APs, 5-HT suppressed AP output in CPn L5PNs, enhanced AP generation in COM-excited L5PNs, and generated variable responses in COM-biphasic L5PNs. While COM-excited neurons failed to respond to 5-HT in the presence of a 2A receptor antagonist, 32% of CPn neurons exhibited 2A-dependent excitation following blockade of 1A receptors. The presence of pharmacologically revealed 2A receptors in CPn L5PNs was correlated with the duration of 1A-mediated inhibition, yet biphasic excitatory responses to 5-HT were never observed, even when 5-HT was paired with strong excitatory drive. Our results suggest that 2A receptors selectively amplify the output of COM L5PNs experiencing suprathreshold excitatory drive, while shaping the duration of 1A-mediated inhibition in a subset of CPn L5PNs. Activity-dependent serotonergic excitation of COM L5PNs, combined with 1A-mediated inhibition of CPn and COM-biphasic L5PNs, may facilitate executive function by focusing network activity within cortical circuits subserving the most appropriate behavioral output.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Ponte/citologia , Córtex Pré-Frontal/citologia , Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Corantes Fluorescentes/metabolismo , Lateralidade Funcional , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Piridinas/farmacologia , Tempo de Reação/efeitos dos fármacos , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA