RESUMO
The design and the first experiments are described of a versatile cryogenic insert used for its electrical transport capabilities. The insert is designed for the cryomagnet installed on the DEIMOS beamline at the SOLEIL synchrotron dedicated to magnetic characterizations through X-ray absorption spectroscopy (XAS) measurements. This development was spurred by the multifunctional properties of novel materials such as multiferroics, in which, for example, the magnetic and electrical orders are intertwined and may be probed using XAS. The insert thus enables XAS to in situ probe this interplay. The implementation of redundant wiring and careful shielding also enables studies on operating electronic devices. Measurements on magnetic tunnel junctions illustrate the potential of the equipment toward XAS studies of in operando electronic devices.
RESUMO
Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.