Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270916

RESUMO

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Assuntos
Bacillus subtilis/citologia , Citidina Trifosfato/metabolismo , Pirofosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Cromossomos Bacterianos/genética , Citidina Trifosfato/fisiologia , Proteínas do Citoesqueleto/genética , Pirofosfatases/fisiologia
2.
Mol Cell ; 73(4): 749-762.e5, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661981

RESUMO

The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Bacteriocinas/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Ribossomos/enzimologia , Inibidores da Topoisomerase II/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Difração de Raios X
3.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37486356

RESUMO

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Assuntos
Resistência à Doença , Proteínas de Plantas , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Alelos , Plantas/genética , Imunidade Vegetal/genética , Doenças das Plantas/genética
4.
Proc Natl Acad Sci U S A ; 120(49): e2310664120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039272

RESUMO

In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs). This leads to direct TPD of the TFs by the 26S proteasome. Here, we report the crystal structures of the SAP05-Rpn10vWA complex at 2.17 Å resolution and of the SAP05-SPL5ZnF complex at 2.20 Å resolution. Structural analyses revealed that SAP05 displays a remarkable bimodular architecture with two distinct nonoverlapping surfaces, a "loop surface" with three protruding loops that form electrostatic interactions with ZnF, and a "sheet surface" featuring two ß-sheets, loops, and α-helices that establish polar interactions with vWA. SAP05 binding to ZnF TFs involves single amino acids responsible for multiple contacts, while SAP05 binding to vWA is more stable due to the necessity of multiple mutations to break the interaction. In addition, positioning of the SAP05 complex on the 26S proteasome points to a mechanism of protein degradation. Collectively, our findings demonstrate how a small bacterial bimodular protein can bypass the canonical ubiquitin-proteasome proteolysis pathway, enabling ubiquitin-independent TPD in eukaryotic cells. This knowledge holds significant potential for the creation of TPD technologies.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica , Eucariotos/metabolismo
5.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906068

RESUMO

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Assuntos
DNA Girase , Escherichia coli , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Girase/metabolismo , DNA Girase/química , Sítios de Ligação , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Relação Estrutura-Atividade , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Estrutura Molecular , Teoria Quântica , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Modelos Moleculares
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836580

RESUMO

DNA gyrase, a type II topoisomerase, introduces negative supercoils into DNA using ATP hydrolysis. The highly effective gyrase-targeted drugs, fluoroquinolones (FQs), interrupt gyrase by stabilizing a DNA-cleavage complex, a transient intermediate in the supercoiling cycle, leading to double-stranded DNA breaks. MfpA, a pentapeptide-repeat protein in mycobacteria, protects gyrase from FQs, but its molecular mechanism remains unknown. Here, we show that Mycobacterium smegmatis MfpA (MsMfpA) inhibits negative supercoiling by M. smegmatis gyrase (Msgyrase) in the absence of FQs, while in their presence, MsMfpA decreases FQ-induced DNA cleavage, protecting the enzyme from these drugs. MsMfpA stimulates the ATPase activity of Msgyrase by directly interacting with the ATPase domain (MsGyrB47), which was confirmed through X-ray crystallography of the MsMfpA-MsGyrB47 complex, and mutational analysis, demonstrating that MsMfpA mimics a T (transported) DNA segment. These data reveal the molecular mechanism whereby MfpA modulates the activity of gyrase and may provide a general molecular basis for the action of other pentapeptide-repeat proteins.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Mimetismo Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mycobacterium/enzimologia , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Clivagem do DNA , Proteínas Monoméricas de Ligação ao GTP/química , Conformação Proteica
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880132

RESUMO

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Morte Celular , Clonagem Molecular , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Mutação , Proteínas de Plantas/genética , Conformação Proteica , Pseudomonas syringae/imunologia , Nicotiana
8.
J Bacteriol ; 205(6): e0013523, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37249447

RESUMO

In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
Proteins ; 91(3): 300-314, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36134899

RESUMO

Bacteria are equipped with a diverse set of regulatory tools that allow them to quickly adapt to their environment. The RimK system allows for Pseudomonas spp. to adapt through post-transcriptional regulation by altering the ribosomal subunit RpsF. RimK is found in a wide range of bacteria with a conserved amino acid sequence, however, the genetic context and the role of this protein is highly diverse. By solving and comparing the structures of RimK homologs from two related but functionally divergent systems, we uncovered key structural differences that likely contribute to the different activity levels of each of these homologs. Moreover, we were able to clearly resolve the active site of this protein for the first time, resolving binding of the glutamate substrate. This work advances our understanding of how subtle differences in protein sequence and structure can have profound effects on protein activity, which can in turn result in widespread mechanistic changes.


Assuntos
Pseudomonas , Ribossomos , Ribossomos/metabolismo , Sequência de Aminoácidos , Ácido Glutâmico/metabolismo
10.
J Bacteriol ; 204(8): e0010822, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862789

RESUMO

DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus Streptomyces contain LexA and RecA homologs, but their roles in Streptomyces have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent recA promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in S. venezuelae. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing Streptomyces bacteria and establish the existence of the SOS response in Streptomyces. Collectively, our work reveals significant insights into the DNA damage response in Streptomyces that will promote further studies to understand how these important bacteria adapt to their environment.


Assuntos
Proteínas de Bactérias , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Recombinases Rec A/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
11.
Nat Chem Biol ; 16(4): 383-386, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066966

RESUMO

Cycloaddition reactions generate chemical complexity in a single step. Here we report the crystal structures of three homologous plant-derived cyclases involved in the biosynthesis of iboga and aspidosperma alkaloids. These enzymes act on the same substrate, named angryline, to generate three distinct scaffolds. Mutational analysis reveals how these highly similar enzymes control regio- and stereo-selectivity.


Assuntos
Alcaloides/biossíntese , Aspidosperma/química , Tabernaemontana/química , Alcaloides/química , Carbazóis/química , Reação de Cicloadição/métodos , Alcaloides Indólicos/química , Plantas/química
12.
Angew Chem Int Ed Engl ; 61(48): e202210934, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36198083

RESUMO

Medium-chain alcohol dehydrogenases (ADHs) comprise a highly conserved enzyme family that catalyse the reversible reduction of aldehydes. However, recent discoveries in plant natural product biosynthesis suggest that the catalytic repertoire of ADHs has been expanded. Here we report the crystal structure of dihydroprecondylocarpine acetate synthase (DPAS), an ADH that catalyses the non-canonical 1,4-reduction of an α,ß-unsaturated iminium moiety. Comparison with structures of plant-derived ADHs suggest the 1,4-iminium reduction does not require a proton relay or the presence of a catalytic zinc ion in contrast to canonical 1,2-aldehyde reducing ADHs that require the catalytic zinc and a proton relay. Furthermore, ADHs that catalysed 1,2-iminium reduction required the presence of the catalytic zinc and the loss of the proton relay. This suggests how the ADH active site can be modified to perform atypical carbonyl reductions, providing insight into how chemical reactions are diversified in plant metabolism.


Assuntos
Álcool Desidrogenase , Prótons , Álcool Desidrogenase/metabolismo , Plantas/metabolismo , Etanol , Catálise , Zinco/metabolismo
13.
Nat Chem Biol ; 15(1): 71-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531909

RESUMO

Terpene synthases typically form complex molecular scaffolds by concerted activation and cyclization of linear starting materials in a single enzyme active site. Here we show that iridoid synthase, an atypical reductive terpene synthase, catalyzes the activation of its substrate 8-oxogeranial into a reactive enol intermediate, but does not catalyze the subsequent cyclization into nepetalactol. This discovery led us to identify a class of nepetalactol-related short-chain dehydrogenase enzymes (NEPS) from catmint (Nepeta mussinii) that capture this reactive intermediate and catalyze the stereoselective cyclisation into distinct nepetalactol stereoisomers. Subsequent oxidation of nepetalactols by NEPS1 provides nepetalactones, metabolites that are well known for both insect-repellent activity and euphoric effects in cats. Structural characterization of the NEPS3 cyclase reveals that it binds to NAD+ yet does not utilize it chemically for a non-oxidoreductive formal [4 + 2] cyclization. These discoveries will complement metabolic reconstructions of iridoid and monoterpene indole alkaloid biosynthesis.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Monoterpenos/metabolismo , Nepeta/metabolismo , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cristalografia por Raios X , Ciclização , Iridoides/metabolismo , Nepeta/genética , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Serina/genética , Serina/metabolismo
14.
J Antimicrob Chemother ; 75(10): 2835-2842, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32728686

RESUMO

OBJECTIVES: To evaluate the efficacy of two novel compounds against mycobacteria and determine the molecular basis of their action on DNA gyrase using structural and mechanistic approaches. METHODS: Redx03863 and Redx04739 were tested in antibacterial assays, and also against their target, DNA gyrase, using DNA supercoiling and ATPase assays. X-ray crystallography was used to determine the structure of the gyrase B protein ATPase sub-domain from Mycobacterium smegmatis complexed with the aminocoumarin drug novobiocin, and structures of the same domain from Mycobacterium thermoresistibile complexed with novobiocin, and also with Redx03863. RESULTS: Both compounds, Redx03863 and Redx04739, were active against selected Gram-positive and Gram-negative species, with Redx03863 being the more potent, and Redx04739 showing selectivity against M. smegmatis. Both compounds were potent inhibitors of the supercoiling and ATPase reactions of DNA gyrase, but did not appreciably affect the ATP-independent relaxation reaction. The structure of Redx03863 bound to the gyrase B protein ATPase sub-domain from M. thermoresistibile shows that it binds at a site adjacent to the ATP- and novobiocin-binding sites. We found that most of the mutations that we made in the Redx03863-binding pocket, based on the structure, rendered gyrase inactive. CONCLUSIONS: Redx03863 and Redx04739 inhibit gyrase by preventing the binding of ATP. The fact that the Redx03863-binding pocket is distinct from that of novobiocin, coupled with the lack of activity of resistant mutants, suggests that such compounds could have potential to be further exploited as antibiotics.


Assuntos
Adenosina Trifosfatases , DNA Girase , Mycobacterium , Adenosina Trifosfatases/efeitos dos fármacos , Mycobacteriaceae , Novobiocina/farmacologia , Inibidores da Topoisomerase II/farmacologia
15.
Nucleic Acids Res ; 46(3): 1196-1209, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29186514

RESUMO

Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA-ParB-parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Caulobacter crescentus/genética , Centrômero/metabolismo , Cromossomos Bacterianos/química , DNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Caulobacter crescentus/metabolismo , Centrômero/química , Mapeamento Cromossômico/métodos , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Elementos de DNA Transponíveis , DNA Bacteriano/química , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Motivos de Nucleotídeos , Ligação Proteica
16.
PLoS Genet ; 13(6): e1006839, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28658302

RESUMO

Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate.


Assuntos
Proteínas de Bactérias/genética , Gluconatos/metabolismo , Pseudomonas fluorescens/genética , Fatores de Transcrição/genética , Sítios de Ligação , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Gluconeogênese/genética , Glucose/metabolismo , Glioxilatos/metabolismo , Ligantes , Redes e Vias Metabólicas/genética , Pseudomonas fluorescens/metabolismo , Ácido Pirúvico/metabolismo
17.
Proteins ; 87(10): 885-892, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31134667

RESUMO

Glycoside phosphorylases (GPs) with specificity for ß-(1 → 3)-gluco-oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far-glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X-ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on ß-(1 → 3)-gluco-oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.


Assuntos
Proteínas de Bactérias/química , Glucosiltransferases/química , Glicosídeos/metabolismo , Oligossacarídeos/metabolismo , Fosforilases/química , beta-Glucanas/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/metabolismo , Glicosídeos/química , Modelos Moleculares , Oligossacarídeos/química , Fosforilases/metabolismo , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato , beta-Glucanas/química
18.
Chembiochem ; 20(2): 181-192, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29856496

RESUMO

Glycoside phosphorylases (GPs) carry out a reversible phosphorolysis of carbohydrates into oligosaccharide acceptors and the corresponding sugar 1-phosphates. The reversibility of the reaction enables the use of GPs as biocatalysts for carbohydrate synthesis. Glycosyl hydrolase family 94 (GH94), which only comprises GPs, is one of the most studied GP families that have been used as biocatalysts for carbohydrate synthesis, in academic research and in industrial production. Understanding the mechanism of GH94 enzymes is a crucial step towards enzyme engineering to improve and expand the applications of these enzymes in synthesis. In this work with a GH94 laminaribiose phosphorylase from Paenibacillus sp. YM-1 (PsLBP), we have demonstrated an enzymatic synthesis of disaccharide 1 (ß-d-mannopyranosyl-(1→3)-d-glucopyranose) by using a natural acceptor glucose and noncognate donor substrate α-mannose 1-phosphate (Man1P). To investigate how the enzyme recognises different sugar 1-phosphates, the X-ray crystal structures of PsLBP in complex with Glc1P and Man1P have been solved, providing the first molecular detail of the recognition of a noncognate donor substrate by GPs, which revealed the importance of hydrogen bonding between the active site residues and hydroxy groups at C2, C4, and C6 of sugar 1-phosphates. Furthermore, we used saturation transfer difference NMR spectroscopy to support crystallographic studies on the sugar 1-phosphates, as well as to provide further insights into the PsLBP recognition of the acceptors and disaccharide products.


Assuntos
Glucose/química , Glucosiltransferases/química , Manosefosfatos/química , Paenibacillus/enzimologia , Cristalografia por Raios X , Glucose/metabolismo , Glucosiltransferases/metabolismo , Manosefosfatos/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Especificidade por Substrato
19.
Bioorg Med Chem ; 27(16): 3546-3550, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257079

RESUMO

Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.


Assuntos
DNA Girase/genética , Escherichia coli/metabolismo , Inibidores da Topoisomerase II/uso terapêutico , Modelos Moleculares , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
20.
J Biol Chem ; 292(3): 945-954, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27903647

RESUMO

Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate.


Assuntos
Açúcares de Guanosina Difosfato/metabolismo , Streptomyces/metabolismo , Fosfatos Açúcares/biossíntese , Trealose/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/genética , Galactose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Açúcares de Guanosina Difosfato/genética , Streptomyces/genética , Fosfatos Açúcares/genética , Trealose/biossíntese , Trealose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA