Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 327(2): E155-E171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630048

RESUMO

Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. Although spinophilin is enriched in neurons, its roles in nonneuronal tissues, such as ß cells of the pancreatic islets, are unclear. We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. We have identified multiple putative spinophilin-interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that normally act to mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high-fat diet-fed (HFF) models of obesity. In addition, we have found that spinophilin interacts with proteins from similar classes in isolated islets, suggesting a role for spinophilin in the pancreatic islet. Consistent with a pancreatic ß cell type-specific role for spinophilin, using our recently described conditional spinophilin knockout mice, we found that loss of spinophilin specifically in pancreatic ß cells improved glucose tolerance without impacting body weight in chow-fed mice. Our data further support the role of spinophilin in mediating pathophysiological changes in body weight and whole body metabolism associated with obesity. Our data provide the first evidence that pancreatic spinophilin protein interactions are modulated by obesity and that loss of spinophilin specifically in pancreatic ß cells impacts whole body glucose tolerance.NEW & NOTEWORTHY To our knowledge, these data are the first to demonstrate that obesity impacts spinophilin protein interactions in the pancreas and identify spinophilin specifically in pancreatic ß cells as a modulator of whole body glucose tolerance.


Assuntos
Proteínas dos Microfilamentos , Obesidade , Pâncreas , Células Secretoras de Insulina/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Pâncreas/patologia , Pancreatopatias/patologia , Técnicas de Inativação de Genes , Masculino , Feminino , Animais , Camundongos , Aumento de Peso/genética , Diabetes Mellitus/patologia
2.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798361

RESUMO

Objective: Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. While spinophilin is enriched in neurons, its roles in non-neuronal tissues, such as beta cells of the pancreatic islets, are unclear. Methods & Results: We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. Using proteomics and immunoblotting-based approaches we identified multiple putative spinophilin interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high fat-fed (HFF) models of obesity. Moreover, loss of spinophilin specifically in pancreatic beta cells improved glucose tolerance without impacting body weight. Conclusion: Our data further support a role for spinophilin in mediating pathophysiological changes in body weight and whole-body metabolism associated with obesity and provide the first evidence that spinophilin mediates obesity-dependent pancreatic dysfunction that leads to deficits in glucose homeostasis or diabesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA