Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 67(11): 333-336, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29565842

RESUMO

Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.


Assuntos
Tempestades Ciclônicas , Desastres , Laboratórios/organização & administração , Prática de Saúde Pública , Centers for Disease Control and Prevention, U.S. , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Testes Diagnósticos de Rotina , Humanos , Vigilância da População , Porto Rico/epidemiologia , Estados Unidos
2.
JMIR Form Res ; 7: e32848, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999952

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic has underscored the need for field specimen collection and transport to diagnostic and public health laboratories. Self-collected nasal swabs transported without dependency on a cold chain have the potential to remove critical barriers to testing, expand testing capacity, and reduce opportunities for exposure of health professionals in the context of a pandemic. OBJECTIVE: We compared nasal swab collection by study participants from themselves and their children at home to collection by trained research staff. METHODS: Each adult participant collected 1 nasal swab, sampling both nares with the single swab, after which they collected 1 nasal swab from 1 child. After all the participant samples were collected for the household, the research staff member collected a separate single duplicate sample from each individual. Immediately after the sample collection, the adult participants completed a questionnaire about the acceptability of the sampling procedures. Swabs were placed in temperature-stable preservative and respiratory viruses were detected by shotgun RNA sequencing, enabling viral genome analysis. RESULTS: In total, 21 households participated in the study, each with 1 adult and 1 child, yielding 42 individuals with paired samples. Study participants reported that self-collection was acceptable. Agreement between identified respiratory viruses in both swabs by RNA sequencing demonstrated that adequate collection technique was achieved by brief instructions. CONCLUSIONS: Our results support the feasibility of a scalable and convenient means for the identification of respiratory viruses and implementation in pandemic preparedness for novel respiratory pathogens.

3.
Open Forum Infect Dis ; 8(7): ofab346, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34322569

RESUMO

BACKGROUND: Osteoarticular infections (OAIs) are frequently encountered in children. Treatment may be guided by isolation of a pathogen; however, operative cultures are often negative. Metagenomic next-generation sequencing (mNGS) allows for broad and sensitive pathogen detection that is culture-independent. We sought to evaluate the diagnostic utility of mNGS in comparison to culture and usual care testing to detect pathogens in acute osteomyelitis and/or septic arthritis in children. METHODS: This was a single-site study to evaluate the use of mNGS in comparison to culture to detect pathogens in acute pediatric osteomyelitis and/or septic arthritis. Subjects admitted to a tertiary children's hospital with suspected OAI were eligible for enrollment. We excluded subjects with bone or joint surgery within 30 days of admission or with chronic osteomyelitis. Operative samples were obtained at the surgeon's discretion per standard care (fluid or tissue) and based on imaging and operative findings. We compared mNGS to culture and usual care testing (culture and polymerase chain reaction [PCR]) from the same site. RESULTS: We recruited 42 subjects over the enrollment period. mNGS of the operative samples identified a pathogen in 26 subjects compared to 19 subjects in whom culture identified a pathogen. In 4 subjects, mNGS identified a pathogen where combined usual care testing (culture and PCR) was negative. Positive predictive agreement and negative predictive agreement both were 93.0% for mNGS. CONCLUSIONS: In this single-site prospective study of pediatric OAI, we demonstrated the diagnostic utility of mNGS testing in comparison to culture and usual care (culture and PCR) from operative specimens.

4.
Open Forum Infect Dis ; 8(6): ofab104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34104666

RESUMO

BACKGROUND: Pediatric central nervous system (CNS) infections are potentially life-threatening and may incur significant morbidity. Identifying a pathogen is important, both in terms of guiding therapeutic management and in characterizing prognosis. Usual care testing by culture and polymerase chain reaction is often unable to identify a pathogen. We examined the systematic application of metagenomic next-generation sequencing (mNGS) for detecting organisms and transcriptomic analysis of cerebrospinal fluid (CSF) in children with central nervous system (CNS) infections. METHODS: We conducted a prospective multisite study that aimed to enroll all children with a CSF pleocytosis and suspected CNS infection admitted to 1 of 3 tertiary pediatric hospitals during the study timeframe. After usual care testing had been performed, the remaining CSF was sent for mNGS and transcriptomic analysis. RESULTS: We screened 221 and enrolled 70 subjects over a 12-month recruitment period. A putative organism was isolated from CSF in 25 (35.7%) subjects by any diagnostic modality. Metagenomic next-generation sequencing of the CSF samples identified a pathogen in 20 (28.6%) subjects, which were also all identified by usual care testing. The median time to result was 38 hours. CONCLUSIONS: Metagenomic sequencing of CSF has the potential to rapidly identify pathogens in children with CNS infections.

5.
mSphere ; 5(6)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208518

RESUMO

Between 2015 and 2017, routine molecular surveillance in the United States detected multiple mumps viruses (MuVs) with mutations in the small hydrophobic (SH) gene compared to a reference virus of the same genotype. These mutations include an unusual pattern of uracil-to-cytosine hypermutations and other mutations resulting in the generation of premature stop codons or disruption of the canonical stop codon. The mumps virus SH protein may serve as a virulence factor, based on evidence that it inhibits apoptosis and innate immune signaling in vitro and that recombinant viruses that do not express the SH protein are attenuated in an animal model. In this study, mumps viruses bearing variant SH sequences were isolated from contemporary outbreak samples to evaluate the impact of the observed mutations on SH protein function. All isolates with variant SH sequences replicated in interferon-competent cells with no evidence of attenuation. Furthermore, all SH-variant viruses retained the ability to abrogate induction of NF-κB-mediated innate immune signaling in infected cells. Ectopic expression of variant mumps SH genes is consistent with findings from infection experiments, indicating that the observed abrogation of signaling was not mediated by other viral factors that may modulate innate immune signaling. Molecular surveillance is an important public health tool for monitoring the diversity of circulating mumps viruses and can provide insights into determinants of disease. These findings, in turn, will inform studies employing reverse genetics to elucidate the specific mechanisms of MuV pathogenesis and potential impacts of observed sequence variants on infectivity, fitness, and virulence.IMPORTANCE Mumps virus (MuV) outbreaks occur in the United States despite high coverage with measles, mumps, rubella (MMR) vaccine. Routine genotyping of laboratory-confirmed mumps cases has been practiced in the United States since 2006 to enhance mumps surveillance. This study reports the detection of unusual mutations in the small hydrophobic (SH) protein of contemporary laboratory-confirmed mumps cases and is the first to describe the impact of such mutations on SH protein function. These mutations are predicted to profoundly alter the amino acid sequence of the SH protein, which has been shown to antagonize host innate immune responses; however, they were neither associated with defects in virus replication nor attenuated protein function in vitro, consistent with detection in clinical specimens. A better understanding of the forces governing mumps virus sequence diversity and of the functional consequences of mutations in viral proteins is important for maintaining robust capacity for mumps detection and disease control.


Assuntos
Códon de Terminação/genética , Vírus da Caxumba/fisiologia , Mutação , Proteínas Virais/genética , Animais , Humanos , Sarampo/virologia , Virulência , Fatores de Virulência
6.
Nat Commun ; 10(1): 2720, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221973

RESUMO

Public Health Laboratories (PHLs) in Puerto Rico did not escape the devastation caused by Hurricane Maria. We implemented a quality management system (QMS) approach to systematically reestablish laboratory testing, after evaluating structural and functional damage. PHLs were inoperable immediately after the storm. Our QMS-based approach began in October 2017, ended in May 2018, and resulted in the reestablishment of 92% of baseline laboratory testing capacity. Here, we share lessons learned from the historic recovery of the largest United States' jurisdiction to lose its PHL capacity, and provide broadly applicable tools for other jurisdictions to enhance preparedness for public health emergencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA