Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 143(6): 911-23, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145458

RESUMO

Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO3⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO3⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.


Assuntos
Ânions/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Transporte de Íons , Sistema Respiratório/patologia , Animais , Animais Recém-Nascidos , Epitélio/metabolismo , Humanos , Sistema Respiratório/metabolismo , Sus scrofa
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046051

RESUMO

Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Mutação , Mucosa Respiratória/metabolismo , Células Acinares/metabolismo , Animais , Biomarcadores , Fibrose Cística/etiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Mucinas/metabolismo , Depuração Mucociliar , Muco/metabolismo , Mucosa Respiratória/patologia , Suínos
3.
Proc Natl Acad Sci U S A ; 119(13): e2121731119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35324331

RESUMO

SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.


Assuntos
Fibrose Cística , Depuração Mucociliar , Animais , Dissulfetos , Muco , Mucosa Respiratória , Suínos
4.
Artigo em Inglês | MEDLINE | ID: mdl-39104314

RESUMO

Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to limited accessibility of the small airways with the current single photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga] tagged macro-aggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down few minutes after delivery. Cystic fibrosis pig small airways cleared significantly less than non-CF pig small airways (non-CF 25.1±3.1% vs. CF 14.6±0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue UTP further impaired clearance (non-CF with UTP 20.9±0.3% vs. CF with UTP 13.0±1.8%). None of the cystic fibrosis pig treated with UTP (N = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.

5.
Trans Am Clin Climatol Assoc ; 134: 29-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135587

RESUMO

In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Modelos Animais de Doenças , Depuração Mucociliar , Fibrose Cística/metabolismo , Fibrose Cística/complicações , Fibrose Cística/fisiopatologia , Fibrose Cística/genética , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Suínos , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Mutação , Predisposição Genética para Doença , Fenótipo
6.
Am J Respir Crit Care Med ; 207(11): 1486-1497, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952660

RESUMO

Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.


Assuntos
Fibrose Cística , Camundongos , Animais , Humanos , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Alérgenos , Células Epiteliais/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(3): 1621-1627, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31882447

RESUMO

Autosomal recessive diseases, such as cystic fibrosis (CF), require inheritance of 2 mutated genes. However, some studies indicate that CF carriers are at increased risk for some conditions associated with CF. These investigations focused on single conditions and included small numbers of subjects. Our goal was to determine whether CF carriers are at increased risk for a range of CF-related conditions. Using the Truven Health MarketScan Commercial Claims database (2001-2017), we performed a population-based retrospective matched-cohort study. We identified 19,802 CF carriers and matched each carrier with 5 controls. The prevalence of 59 CF-related diagnostic conditions was evaluated in each cohort. Odds ratios for each condition were computed for CF carriers relative to controls. All 59 CF-related conditions were more prevalent among carriers compared with controls, with significantly increased risk (P < 0.05) for 57 conditions. Risk was increased for some conditions previously linked to CF carriers (e.g., pancreatitis, male infertility, bronchiectasis), as well as some conditions not previously reported (e.g., diabetes, constipation, cholelithiasis, short stature, failure to thrive). We compared our results with 23,557 subjects with CF, who were also matched with controls; as the relative odds of a given condition increased among subjects with CF, so did the corresponding relative odds for carriers (P < 0.001). Although individual-level risk remained low for most conditions, because there are more than 10 million carriers in the US, population-level morbidity attributable to the CF carrier state is likely substantial. Genetic testing may inform prevention, diagnosis, and treatment for a broad range of CF carrier-related conditions.


Assuntos
Fibrose Cística/genética , Triagem de Portadores Genéticos , Heterozigoto , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Fibrose Cística/epidemiologia , Feminino , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Prevalência , Estudos Retrospectivos , Estados Unidos , Adulto Jovem
8.
Am J Respir Cell Mol Biol ; 66(6): 612-622, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235762

RESUMO

Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Transporte de Íons , Sistema Respiratório/metabolismo , Suínos
9.
Clin Infect Dis ; 75(7): 1115-1122, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35142340

RESUMO

BACKGROUND: People with cystic fibrosis (CF) routinely suffer from recurrent sinopulmonary infections. Such infections require frequent courses of antimicrobials and often involve multidrug-resistant organisms. The goal of this study was to identify real-world evidence for the effectiveness of elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) in decreasing infection-related visits and antimicrobial use in people with CF. METHODS: Using IBM MarketScan data, we identified 389 enrollees with CF who began taking ELX/TEZ/IVA before 1 December 2019 and were enrolled from 1 July 2019 to 14 March 2020. We also identified a comparison population who did not begin ELX/TEZ/IVA during the study period. We compared the following outcomes in the 15 weeks before and after medication initiation: total healthcare visits, inpatient visits, infection-related visits, and antimicrobial prescriptions. We analyzed outcomes using both a case-crossover analysis and a difference-in-differences analysis, to control for underlying trends. RESULTS: For the case-crossover analysis, ELX/TEZ/IVA initiation was associated with the following changes over a 15-week period: change in overall healthcare visit dates, -2.5 (95% confidence interval, -3.31 to -1.7); change in inpatient admissions, -0.16 (-.22 to -.10); change in infection-related visit dates, -0.62 (-.93 to -.31); and change in antibiotic prescriptions, -0.78 (-1.03 to -.54). Results from the difference-in-differences approach were similar. CONCLUSIONS: We show a rapid reduction in infection-related visits and antimicrobial use among people with CF after starting a therapy that was not explicitly designed to treat infections. Currently, there are >30 000 people living with CF in the United States alone. Given that this therapy is effective for approximately 90% of people with CF, the impact on respiratory infections and antimicrobial use may be substantial.


Assuntos
Fibrose Cística , Aminofenóis/uso terapêutico , Antibacterianos/uso terapêutico , Benzodioxóis , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
10.
Am J Respir Crit Care Med ; 203(3): 328-338, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750253

RESUMO

Rationale: Staphylococcus aureus and Pseudomonas aeruginosa often infect the airways in cystic fibrosis (CF). Because registry studies show higher prevalence of P. aeruginosa versus S. aureus in older patients with CF, a common assumption is that P. aeruginosa replaces S. aureus over time. In vitro, P. aeruginosa can outgrow and kill S. aureus. However, it is unknown how rapidly P. aeruginosa replaces S. aureus in patients with CF.Methods: We studied a longitudinal cohort of children and adults with CF who had quantitative sputum cultures. We determined the abundance of P. aeruginosa and S. aureus in cfu/ml. We determined the duration and persistence of infections and measured longitudinal changes in culture positivity and abundance for each organism.Measurements and Main Results: Between 2004 and 2017, 134 patients had ≥10 quantitative cultures, with median observation time of 10.15 years. One hundred twenty-four patients had at least one positive culture for P. aeruginosa, and 123 had at least one positive culture for S. aureus. Both species had median abundance of >106 cfu/ml. Culture abundance was stable over time for both organisms. There was an increase in the prevalence of S. aureus/P. aeruginosa coinfection but no decrease in S. aureus prevalence within individuals over time.Conclusions: S. aureus and P. aeruginosa are abundant in CF sputum cultures. Contrary to common assumption, we found no pattern of replacement of S. aureus by P. aeruginosa. Many patients with CF have durable long-term coinfection with these organisms. New strategies are needed to prevent and treat these infections.


Assuntos
Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/etiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Coinfecção , Feminino , Humanos , Iowa , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/isolamento & purificação , Estudos Retrospectivos , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
11.
Am J Respir Crit Care Med ; 204(6): 692-702, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34170795

RESUMO

Rationale: Although it is clear that cystic fibrosis (CF) airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. Objectives: As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We believed that, if they do, this might reveal aspects of the disease that are more or less sensitive to decreasing infection. Methods: Three groups of pigs were studied from birth until ∼3 weeks of age: 1) wild-type, 2) CF, and 3) CF pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and BAL. Measurements and Main Results: Disease was present by 3 weeks of age in CF pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation but not airway inflammation in the CF pig model. However, reducing bacterial infection did not improve two disease features already present at birth in CF pigs: air trapping and submucosal gland duct plugging. In the CF sinuses, antibiotics did not prevent the development of infection or disease or the number of bacteria but did alter the bacterial species. Conclusions: These findings suggest that CF airway disease begins immediately after birth and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/patologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Pulmão/patologia , Tomografia Computadorizada Multidetectores , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Suínos
12.
Am J Respir Cell Mol Biol ; 65(2): 146-156, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33789071

RESUMO

In a newborn pig cystic fibrosis (CF) model, the ability of gland-containing airways to fight infection was affected by at least two major host-defense defects: impaired mucociliary transport and a lower airway surface liquid (ASL) pH. In the gland-containing airways, the ASL pH is balanced by CFTR (CF transmembrane conductance regulator) and ATP12A, which, respectively, control HCO3- transport and proton secretion. We found that, although porcine small airway tissue expressed lower amounts of ATP12A, the ASL of epithelial cultures from CF distal small airways (diameter < 200 µm) were nevertheless more acidic (compared with non-CF airways). Therefore, we hypothesized that gland-containing airways and small airways control acidification using distinct mechanisms. Our microarray data suggested that small airway epithelia mediate proton secretion via ATP6V0D2, an isoform of the V0 d subunit of the H+-translocating plasma membrane V-type ATPase. Immunofluorescence of small airways verified the expression of the V0 d2 subunit isoform at the apical surface of Muc5B+ secretory cells, but not ciliated cells. Inhibiting the V-type ATPase with bafilomycin A1 elevated the ASL pH of small airway cultures, in the presence or absence of HCO3-, and decreased ASL viscosity. These data suggest that, unlike large airways, which are acidified by ATP12A activity, small airways are acidified by V-type ATPase, thus identifying V-type ATPase as a novel therapeutic target for small airway diseases.


Assuntos
Bicarbonatos/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Animais Geneticamente Modificados , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Masculino , Suínos , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L323-L330, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774304

RESUMO

In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.


Assuntos
Pulmão/fisiologia , Microscopia , Contração Muscular/fisiologia , Tração , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Broncoconstrição/fisiologia , Humanos , Músculo Liso/fisiologia , Estresse Mecânico , Suínos
14.
Lab Invest ; 100(11): 1388-1399, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719544

RESUMO

Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/complicações , Doenças da Vesícula Biliar/etiologia , Vesícula Biliar/metabolismo , Animais , Animais Recém-Nascidos , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Vesícula Biliar/fisiopatologia , Doenças da Vesícula Biliar/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Suínos , Transcriptoma
15.
Nucleic Acids Res ; 46(18): 9591-9600, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165523

RESUMO

Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30-50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.


Assuntos
Adenoviridae/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Elementos de DNA Transponíveis/genética , Terapia Genética/métodos , Pulmão/metabolismo , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Fenótipo , Mucosa Respiratória/metabolismo , Suínos , Distribuição Tecidual , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 114(26): 6842-6847, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607090

RESUMO

Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.


Assuntos
Remodelação das Vias Aéreas , Fibrose Cística/metabolismo , Células Caliciformes/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Células Caliciformes/patologia , Camundongos , Camundongos Knockout , Mucina-5AC/genética , Mucina-5B/genética
17.
Am J Respir Cell Mol Biol ; 61(6): 747-754, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184507

RESUMO

Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/terapia , Dependovirus/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Animais , Animais Recém-Nascidos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Genes Sintéticos , Humanos , Regiões Promotoras Genéticas , Staphylococcus aureus , Suínos , Traqueia/metabolismo , Traqueia/microbiologia , Integração Viral
18.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L133-L148, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631359

RESUMO

Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Gânglios Parassimpáticos/metabolismo , Transcriptoma , Nervo Vago/metabolismo , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/terapia , Gânglios Parassimpáticos/patologia , Masculino , Camundongos , Camundongos Knockout , Nervo Vago/patologia
19.
Lab Invest ; 98(6): 825-838, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467455

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Pulmão/embriologia , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Feminino , Fator 10 de Crescimento de Fibroblastos/fisiologia , Humanos , Morfogênese , Suínos , Traqueia/anormalidades
20.
Thorax ; 73(2): 134-144, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28916704

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS: Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS: CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS: CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.


Assuntos
Apoptose/fisiologia , Fibrose Cística/patologia , Armadilhas Extracelulares , Neutrófilos/fisiologia , Adulto , Animais , Estudos de Casos e Controles , Sobrevivência Celular , Fibrose Cística/sangue , Fibrose Cística/imunologia , Humanos , Inflamação , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA