Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 8520-8526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571109

RESUMO

We report an anti-resonant hollow core fibre with ultraviolet transmission down to 190 nm, covering the entire UV-A, UV-B and much of the UV-C band. Guidance from 190 - 400 nm is achieved apart for a narrow high loss resonance band at 245 - 265 nm. The minimum attenuation is 0.13 dB/m at 235 nm and 0.16 dB/m at 325 nm. With an inscribed core diameter of ∼12 µm, the fibre's bend loss at 325 nm was 0.22 dB per turn for a bend radius of 3 cm at 325 nm.

2.
Opt Express ; 32(1): 922-931, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175113

RESUMO

We present a method with potential for fabricating freeform air-silica optical fibre preforms which is free from the stacking constraints associated with conventional stack-and-draw. The method, termed Axi-Stack, is enabled by the precision machining of short cross-sectional preform discs by ultrafast laser assisted etching; a laser-based microfabrication technique which facilitates near arbitrary shaping of the preform structure. Several preform discs are stacked axially and fused together via ultrafast laser welding to construct the preform, which can be drawn to fibre using conventional methods. To illustrate the Axi-Stack process, we detail the fabrication of a 30 cm long solid-core photonic crystal fibre preform with a square lattice of cladding holes and characterise fibre drawn from it.

3.
Opt Lett ; 49(11): 3090-3093, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824335

RESUMO

Tunable ultrashort pulses in the ultraviolet spectral region are in great demand for a wide range of applications, including spectroscopy and pump-probe experiments. While laser sources capable of producing such pulses exist, they are typically very complex. Notably, resonant dispersive-wave (RDW) emission has emerged as a simple technique for generating such pulses. However, the required pulse energy used to drive the RDW emission, so far, is mostly at the microjoule level, requiring complicated and expensive pump sources. Here, we present our work on lowering the pump energy threshold for generating tuneable deep ultraviolet pulses to the level of tens of nanojoules. We fabricated a record small-core antiresonant fiber with a hollow-core diameter of just 6 µm. When filled with argon, the small mode area enables higher-order soliton propagation and deep ultraviolet (220 to 270 nm) RDW emission from 36 fs pump pulses at 515 nm with the lowest pump energy reported to date (tens of nanojoules). This approach will allow the use of low-cost and compact laser oscillators to drive nonlinear optics in gas-filled fibers for the first time to our knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA