Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunogenetics ; 76(1): 15-25, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063879

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lasted from March 2020 to May 2023, infecting over 689 million and causing 6.9 million deaths globally. SARS-CoV-2 enters human cells via the spike protein binding to ACE2 receptors, leading to viral replication and an exaggerated immune response characterized by a "cytokine storm." This review analyzes the COVID-19 pathogenesis, strains, risk factors for severe disease, and vaccine types and effectiveness. A systematic literature search for 2020-2023 was conducted. Results show the cytokine storm underlies COVID-19 pathogenesis, causing multiorgan damage. Key viral strains include Alpha, Beta, Gamma, Delta, and Omicron, differing in transmissibility, disease severity, and vaccine escape. Risk factors for severe COVID-19 include older age, obesity, and comorbidities. mRNA, viral vector, and inactivated vaccines effectively prevent hospitalization and death, although new variants exhibit some vaccine escape. Ongoing monitoring of emerging strains and vaccine effectiveness is warranted. This review provides updated information on COVID-19 pathogenesis, viral variants, risk factors, and vaccines to inform public health strategies for containment and treatment.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Síndrome da Liberação de Citocina , Pandemias , Inflamação
2.
Qatar Med J ; 2024(1): 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468605

RESUMO

Sixty patients with COVID-19 infection were categorized into mild and severe groups, and their immune response was analyzed using flow cytometry and complete blood count. An observed increase in immune activation parameters, notably a higher percentage of CD4 lymphocytes co-expressing CD69 and CD25 molecules, and enhanced activity of the macrophage-monocyte cell line was noted in the mild group. Although Group 2 (severe COVID) had fewer CD4 cells, significant migration and proliferation were evident, with increased CD4CD69, CD8 HLA-DR+, and CD8CD69 lymphocytes. The CD4 to CD8 ratio in Group 1 suggested potential autoimmune reactions, while Group 2 indicated potential immunosuppression from severe infection and employing immunosuppressive drugs. Additionally, Group 2 exhibited an increased neutrophil count, hinting at possible bacterial co-infection. Group 1 showed differences in CD4RO and CD8RA lymphocyte populations, implying that cellular immunity plays a role in developing efficient postinfectious immunity. This intimation suggests that vaccination might mitigate the severity of the coronavirus infection and prevent complications, including long-term COVID-19.

3.
PLoS One ; 19(6): e0302248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935767

RESUMO

The Coronavirus Disease 2019 (COVID-19) has caused a global health crisis. Mortality predictors in critically ill patients remain under investigation. A retrospective cohort study included 201 patients admitted to the intensive care unit (ICU) due to COVID-19. Data on demographic characteristics, laboratory findings, and mortality were collected. Logistic regression analysis was conducted with various independent variables, including demographic characteristics, clinical factors, and treatment methods. The study aimed to identify key risk factors associated with mortality in an ICU. In an investigation of 201 patients comprising non-survivors (n = 80, 40%) and Survivors (n = 121, 60%), we identified several markers significantly associated with ICU mortality. Lower Interleukin 6 and White Blood Cells levels at both 24- and 48-hours post-ICU admission emerged as significant indicators of survival. The study employed logistic regression analysis to evaluate risk factors for in-ICU mortality. Analysis results revealed that demographic and clinical factors, including gender, age, and comorbidities, were not significant predictors of in-ICU mortality. Ventilator-associated pneumonia was significantly higher in Survivors, and the use of antibiotics showed a significant association with increased mortality risk in the multivariate model (OR: 11.2, p = 0.031). Our study underscores the significance of monitoring Il-6 and WBC levels within 48 hours of ICU admission, potentially influencing COVID-19 patient outcomes. These insights may reshape therapeutic strategies and ICU protocols for critically ill patients.


Assuntos
COVID-19 , Estado Terminal , Unidades de Terapia Intensiva , Interleucina-6 , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Estudos Retrospectivos , Fatores de Risco , Interleucina-6/sangue , SARS-CoV-2/isolamento & purificação , Adulto , Mortalidade Hospitalar , Pneumonia Associada à Ventilação Mecânica/mortalidade , Modelos Logísticos , Contagem de Leucócitos
4.
Vaccines (Basel) ; 10(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214792

RESUMO

Systemic vaccination with the BNT162b2 mRNA vaccine stimulates the humoral response. Our study aimed to compare the intensity of the humoral immune response, measured by SARS-CoV-2 IgG, SARS-CoV-2 IgM, and S-RBD-neutralizing IgG antibody levels after COVID-19 vaccination versus after SARS-CoV-2 infection. We analyzed 1060 people in the following groups: convalescents; healthy unvaccinated individuals; individuals vaccinated with Comirnaty, AstraZeneca, Moderna, or Johnson & Johnson; and vaccinated SARS-CoV-2 convalescents. The concentrations of SARS-CoV-2 IgG, SARS-CoV-2 IgM, and S-RBD-neutralizing antibodies were estimated in an oncology hospital laboratory by chemiluminescent immunoassay (CLIA; MAGLUMI). Results: (1) We observed a rise in antibody response in both the SARS-CoV-2 convalescent and COVID-19-vaccinated groups. (2) The levels of all antibody concentrations in vaccinated COVID-19 convalescents were significantly higher. (3) We differentiated asymptomatic SARS-CoV-2 convalescents from the control group. Our analysis suggests that monitoring SARS-CoV-2 IgG antibody concentrations is essential as an indicator of asymptomatic COVID-19 and as a measure of the effectiveness of the humoral response in convalescents and vaccinated people. Considering the time-limited effects of post-SARS-CoV-2 infection recovery or vaccination and the physiological half-life, among other factors, we suggest monitoring IgG antibody levels as a criterion for future vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA