Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472455

RESUMO

MOTIVATION: Making sense of networked multivariate association patterns is vitally important to many areas of high-dimensional analysis. Unfortunately, as the data-space dimensions grow, the number of association pairs increases in O(n2); this means that traditional visualizations such as heatmaps quickly become too complicated to parse effectively. RESULTS: Here, we present associationSubgraphs: a new interactive visualization method to quickly and intuitively explore high-dimensional association datasets using network percolation and clustering. The goal is to provide an efficient investigation of association subgraphs, each containing a subset of variables with stronger and more frequent associations among themselves than the remaining variables outside the subset, by showing the entire clustering dynamics and providing subgraphs under all possible cutoff values at once. Particularly, we apply associationSubgraphs to a phenome-wide multimorbidity association matrix generated from an electronic health record and provide an online, interactive demonstration for exploring multimorbidity subgraphs. AVAILABILITY AND IMPLEMENTATION: An R package implementing both the algorithm and visualization components of associationSubgraphs is available at https://github.com/tbilab/associationsubgraphs. Online documentation is available at https://prod.tbilab.org/associationsubgraphs_info/. A demo using a multimorbidity association matrix is available at https://prod.tbilab.org/associationsubgraphs-example/.


Assuntos
Multimorbidade , Software , Algoritmos , Análise por Conglomerados , Fenômica
2.
Bioinformatics ; 37(12): 1778-1780, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33051675

RESUMO

SUMMARY: Electronic health records (EHRs) linked with a DNA biobank provide unprecedented opportunities for biomedical research in precision medicine. The Phenome-wide association study (PheWAS) is a widely used technique for the evaluation of relationships between genetic variants and a large collection of clinical phenotypes recorded in EHRs. PheWAS analyses are typically presented as static tables and charts of summary statistics obtained from statistical tests of association between a genetic variant and individual phenotypes. Comorbidities are common and typically lead to complex, multivariate gene-disease association signals that are challenging to interpret. Discovering and interrogating multimorbidity patterns and their influence in PheWAS is difficult and time-consuming. We present PheWAS-ME: an interactive dashboard to visualize individual-level genotype and phenotype data side-by-side with PheWAS analysis results, allowing researchers to explore multimorbidity patterns and their associations with a genetic variant of interest. We expect this application to enrich PheWAS analyses by illuminating clinical multimorbidity patterns present in the data. AVAILABILITY AND IMPLEMENTATION: A demo PheWAS-ME application is publicly available at https://prod.tbilab.org/phewas_me/. Sample datasets are provided for exploration with the option to upload custom PheWAS results and corresponding individual-level data. Online versions of the appendices are available at https://prod.tbilab.org/phewas_me_info/. The source code is available as an R package on GitHub (https://github.com/tbilab/multimorbidity_explorer). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aplicativos Móveis , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Multimorbidade , Fenótipo
3.
J Am Med Inform Assoc ; 31(11): 2440-2446, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127052

RESUMO

OBJECTIVES: To address the need for interactive visualization tools and databases in characterizing multimorbidity patterns across different populations, we developed the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME). This tool leverages three large-scale EHR systems to facilitate efficient analysis and visualization of disease multimorbidity, aiming to reveal both robust and novel disease associations that are consistent across different systems and to provide insight for enhancing personalized healthcare strategies. MATERIALS AND METHODS: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities, utilizing data from Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. It offers interactive and multifaceted visualizations for exploring multimorbidity. Incorporating an enhanced version of associationSubgraphs, PheMIME also enables dynamic analysis and inference of disease clusters, promoting the discovery of complex multimorbidity patterns. A case study on schizophrenia demonstrates its capability for generating interactive visualizations of multimorbidity networks within and across multiple systems. Additionally, PheMIME supports diverse multimorbidity-based discoveries, detailed further in online case studies. RESULTS: The PheMIME is accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial and multiple case studies for demonstration are available at https://prod.tbilab.org/PheMIME_supplementary_materials/. The source code can be downloaded from https://github.com/tbilab/PheMIME. DISCUSSION: PheMIME represents a significant advancement in medical informatics, offering an efficient solution for accessing, analyzing, and interpreting the complex and noisy real-world patient data in electronic health records. CONCLUSION: PheMIME provides an extensive multimorbidity knowledge base that consolidates data from three EHR systems, and it is a novel interactive tool designed to analyze and visualize multimorbidities across multiple EHR datasets. It stands out as the first of its kind to offer extensive multimorbidity knowledge integration with substantial support for efficient online analysis and interactive visualization.


Assuntos
Registros Eletrônicos de Saúde , Multimorbidade , Humanos , Bases de Conhecimento , Software , Esquizofrenia , Fenômica , Interface Usuário-Computador , Internet , Fenótipo
4.
medRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585743

RESUMO

Background: Electronic health records (EHR) are increasingly used for studying multimorbidities. However, concerns about accuracy, completeness, and EHRs being primarily designed for billing and administrative purposes raise questions about the consistency and reproducibility of EHR-based multimorbidity research. Methods: Utilizing phecodes to represent the disease phenome, we analyzed pairwise comorbidity strengths using a dual logistic regression approach and constructed multimorbidity as an undirected weighted graph. We assessed the consistency of the multimorbidity networks within and between two major EHR systems at local (nodes and edges), meso (neighboring patterns), and global (network statistics) scales. We present case studies to identify disease clusters and uncover clinically interpretable disease relationships. We provide an interactive web tool and a knowledge base combining data from multiple sources for online multimorbidity analysis. Findings: Analyzing data from 500,000 patients across Vanderbilt University Medical Center and Mass General Brigham health systems, we observed a strong correlation in disease frequencies (Kendall's τ = 0.643) and comorbidity strengths (Pearson ρ = 0.79). Consistent network statistics across EHRs suggest similar structures of multimorbidity networks at various scales. Comorbidity strengths and similarities of multimorbidity connection patterns align with the disease genetic correlations. Graph-theoretic analyses revealed a consistent core-periphery structure, implying efficient network clustering through threshold graph construction. Using hydronephrosis as a case study, we demonstrated the network's ability to uncover clinically relevant disease relationships and provide novel insights. Interpretation: Our findings demonstrate the robustness of large-scale EHR data for studying phenome-wide multimorbidities. The alignment of multimorbidity patterns with genetic data suggests the potential utility for uncovering shared biology of diseases. The consistent core-periphery structure offers analytical insights to discover complex disease interactions. This work also sets the stage for advanced disease modeling, with implications for precision medicine. Funding: VUMC Biostatistics Development Award, the National Institutes of Health, and the VA CSRD.

5.
medRxiv ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37547012

RESUMO

Motivation: Multimorbidity, characterized by the simultaneous occurrence of multiple diseases in an individual, is an increasing global health concern, posing substantial challenges to healthcare systems. Comprehensive understanding of disease-disease interactions and intrinsic mechanisms behind multimorbidity can offer opportunities for innovative prevention strategies, targeted interventions, and personalized treatments. Yet, there exist limited tools and datasets that characterize multimorbidity patterns across different populations. To bridge this gap, we used large-scale electronic health record (EHR) systems to develop the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME), which facilitates research in exploring and comparing multimorbidity patterns among multiple institutions, potentially leading to the discovery of novel and robust disease associations and patterns that are interoperable across different systems and organizations. Results: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities. These are currently derived from three major institutions: Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. PheMIME offers interactive exploration of multimorbidity through multi-faceted visualization. Incorporating an enhanced version of associationSubgraphs, PheMIME enables dynamic analysis and inference of disease clusters, promoting the discovery of multimorbidity patterns. Once a disease of interest is selected, the tool generates interactive visualizations and tables that users can delve into multimorbidities or multimorbidity networks within a single system or compare across multiple systems. The utility of PheMIME is demonstrated through a case study on schizophrenia. Availability and implementation: The PheMIME knowledge base and web application are accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial, including a use-case example, is available at https://prod.tbilab.org/PheMIME_supplementary_materials/. Furthermore, the source code for PheMIME can be freely downloaded from https://github.com/tbilab/PheMIME. Data availability statement: The data underlying this article are available in the article and in its online web application or supplementary material.

6.
Hum Immunol ; 77(3): 288-294, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26359129

RESUMO

Standard measures of linkage disequilibrium (LD) provide an incomplete description of the correlation between two loci. Recently, Thomson and Single (2014) described a new asymmetric pair of LD measures (ALD) that give a more complete description of LD. The ALD measures are symmetric and equivalent to the correlation coefficient r when both loci are bi-allelic. When the numbers of alleles at the two loci differ, the ALD measures capture this asymmetry and provide additional detail about the LD structure. In disease association studies the ALD measures are useful for identifying additional disease genes in a genetic region, by conditioning on known effects. In evolutionary genetic studies ALD measures provide insight into selection acting on individual amino acids of specific genes, or other loci in high LD (see Thomson and Single (2014) for these examples). Here we describe new software for computing and visualizing ALD. We demonstrate the utility of this software using haplotype frequency data from the National Marrow Donor Program (NMDP). This enhances our understanding of LD patterns in the NMDP data by quantifying the degree to which LD is asymmetric and also quantifies this effect for individual alleles.


Assuntos
Alelos , Biologia Computacional/métodos , Desequilíbrio de Ligação , Software , Frequência do Gene , Antígenos HLA/genética , Haplótipos , Humanos , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA