Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroimage ; 93 Pt 1: 95-106, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607447

RESUMO

During the last five years ultra-high-field magnetic resonance imaging (MRI) has enabled an unprecedented view of living human brain. Brain tissue contrast in most MRI sequences is known to reflect mainly the spatial distributions of myelin and iron. These distributions have been shown to overlap significantly in many brain regions, especially in the cortex. It is of increasing interest to distinguish and identify cortical areas by their appearance in MRI, which has been shown to be feasible in vivo. Parcellation can benefit greatly from quantification of the independent contributions of iron and myelin to MRI contrast. Recent studies using susceptibility mapping claim to allow such a separation of the effects of myelin and iron in MRI. We show, using post-mortem human brain tissue, that this goal can be achieved. After MRI scanning of the block with appropriate T1 mapping and T2* weighted sequences, we section the block and apply a novel technique, proton induced X-ray emission (PIXE), to spatially map iron, phosphorus and sulfur elemental concentrations, simultaneously with 1µm spatial resolution. Because most brain phosphorus is located in myelin phospholipids, a calibration step utilizing element maps of sulfur enables semi-quantitative ex vivo mapping of myelin concentration. Combining results for iron and myelin concentration in a linear model, we have accurately modeled MRI tissue contrasts. Conversely, iron and myelin concentrations can now be estimated from appropriate MRI measurements in post-mortem brain samples.


Assuntos
Química Encefálica , Ferro/análise , Proteínas da Mielina/análise , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
2.
Magn Reson Med ; 72(1): 137-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23963641

RESUMO

PURPOSE: MRI methods sensitive to functional changes in cerebral blood volume (CBV) may map neural activity with better spatial specificity than standard functional MRI (fMRI) methods based on blood oxygen level dependent (BOLD) effect. The purpose of this study was to develop and investigate a vascular space occupancy (VASO) method with high sensitivity to CBV changes for use in human brain at 7 Tesla (T). METHODS: To apply 7T VASO, several high-field-specific obstacles must be overcome, e.g., low contrast-to-noise ratio (CNR) due to convergence of blood and tissue T1 , increased functional BOLD signal change contamination, and radiofrequency field inhomogeneities. In the present method, CNR was increased by keeping stationary tissue magnetization in a steady-state different from flowing blood, using slice-selective saturation pulses. Interleaved acquisition of BOLD and VASO signals allowed correction for BOLD contamination. RESULTS: During visual stimulation, a relative CBV change of 28% ± 5% was measured, confined to gray matter in the occipital lobe with high sensitivity. CONCLUSION: By carefully considering all the challenges of high-field VASO and filling behavior of the relevant vasculature, the proposed method can detect and quantify CBV changes with high CNR in human brain at 7T.


Assuntos
Volume Sanguíneo , Circulação Cerebrovascular , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Hipercapnia , Imageamento por Ressonância Magnética/instrumentação , Masculino , Sensibilidade e Especificidade , Razão Sinal-Ruído , Análise e Desempenho de Tarefas
3.
Magn Reson Med ; 71(2): 524-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23440917

RESUMO

PURPOSE: A novel highly accurate method for MR thermometry, effective at high field, is introduced and validated, which corrects for slow and fast field fluctuations by means of reference images. METHODS: An asymmetric spin-echo echo planar imaging sequence was made frequency-selective to water or a reference substance by controlling the slice-select gradient polarity and the duration of the excitation and refocusing radiofrequency pulses. Images were acquired pairwise, and the temperature-sensitive water images were corrected for field fluctuations using the reference images. In a phantom radiofrequency heating experiment, dissolved dimethyl sulfoxide was used as a reference substance. Temperature stability was tested in vivo on the human brain, referenced using subcutaneous scalp fat. Water and fat phase images were acquired only 50 ms apart. Bloch simulations validated the frequency selection accuracy. RESULTS: Asymmetric spin-echo imaging using a simple frequency selection method provides highly accurate referenced MR thermometry in phantoms and in vivo at 7 T. Effects of field fluctuations caused by field drift, breathing, and heart beat were corrected. The technique is highly robust against B1 inhomogeneities. CONCLUSION: Frequency selection using gradient-reversal can enable fast accurate referenced in vivo MR thermometry, assisting thermal characterization of radiofrequency coils and possibly in vivo SAR monitoring.


Assuntos
Imagem Ecoplanar/métodos , Termometria/métodos , Encéfalo/fisiologia , Humanos , Imagens de Fantasmas
4.
MAGMA ; 25(1): 1-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22219020

RESUMO

The Larmor frequency of water protons has reliably linear temperature dependence. Since this frequency shift is easily measurable using relatively simple MRI techniques, a remarkable opportunity arises for uniquely non-invasive and accurate temperature evaluation, deep within any water-containing object. Major applications are appearing in the field of image-guided surgery. The cutting-edge papers collected in this Special Issue demonstrate both the versatility and the power of MRI thermometry.


Assuntos
Imageamento por Ressonância Magnética/métodos , Difusão , Humanos , Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Método de Monte Carlo , Prótons , Temperatura , Água/química
5.
MAGMA ; 25(1): 41-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21479876

RESUMO

OBJECT: The temperature dependence of the proton resonance frequency (PRF) is often used in MR thermometry. However, this method is prone to even very small changes in local magnetic field strength. Here, we report on the effects of susceptibility changes of surrounding air on the magnetic field inside an object and their inferred effect on the measured MR temperature. MATERIALS AND METHODS: MR phase thermometry was performed on spherical agar phantoms enclosed in cylindrical containers at 7 T. The air susceptibility inside the cylindrical container was changed by both heating the air and changing the gas composition. RESULTS: Changing the temperature of surrounding air from 23 to 69°C caused an apparent MR temperature error of 2 K. When ambient air was displaced by 100% oxygen, the MR temperature error increased to 40 K. The magnetic field shift and therefore error in inferred MR temperature scales linearly with volume susceptibility change and has a strong and nontrivial dependence on the experimental configuration. CONCLUSION: Air susceptibility changes associated with oxygen concentration changes greatly affect PRF MR thermometry measurements. Air temperature changes can also affect these measurements, but to a smaller degree. For uncalibrated MR thermometry, air susceptibility changes may be a significant source of error.


Assuntos
Ar , Espectroscopia de Ressonância Magnética/métodos , Ágar/química , Temperatura Corporal , Calibragem , Desenho de Equipamento , Gases , Géis , Temperatura Alta , Humanos , Campos Magnéticos , Oxigênio/química , Imagens de Fantasmas , Reprodutibilidade dos Testes , Temperatura
6.
Magn Reson Med ; 64(2): 319-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20574987

RESUMO

We have discovered a simple and highly robust method for removal of chemical shift artifact in spin-echo MR images, which simultaneously decreases the radiofrequency power deposition (specific absorption rate). The method is demonstrated in spin-echo echo-planar imaging brain images acquired at 7 T, with complete suppression of scalp fat signal. When excitation and refocusing pulses are sufficiently different in duration, and thus also different in the amplitude of their slice-select gradients, a spatial mismatch is produced between the fat slices excited and refocused, with no overlap. Because no additional radiofrequency pulse is used to suppress fat, the specific absorption rate is significantly reduced compared with conventional approaches. This enables greater volume coverage per unit time, well suited for functional and diffusion studies using spin-echo echo-planar imaging. Moreover, the method can be generally applied to any sequence involving slice-selective excitation and at least one slice-selective refocusing pulse at high magnetic field strengths. The method is more efficient than gradient reversal methods and more robust against inhomogeneities of the static (polarizing) field (B(0)).


Assuntos
Algoritmos , Química Encefálica , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
7.
J Cereb Blood Flow Metab ; 32(8): 1618-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569192

RESUMO

Cerebral blood volume (CBV) changes significantly with brain activation, whether measured using positron emission tomography, functional magnetic resonance imaging (fMRI), or optical microscopy. If cerebral vessels are considered to be impermeable, the contents of the skull incompressible, and the skull itself inextensible, task- and hypercapnia-related changes of CBV could produce intolerable changes of intracranial pressure. Because it is becoming clear that CBV may be useful as a well-localized marker of neural activity changes, a resolution of this apparent paradox is needed. We have explored the idea that much of the change in CBV is facilitated by exchange of water between capillaries and surrounding tissue. To this end, we developed a novel hemodynamic boundary-value model and found approximate solutions using a numerical algorithm. We also constructed a macroscopic experimental model of a single capillary to provide biophysical insight. Both experiment and theory model capillary membranes as elastic and permeable. For a realistic change of input pressure, a relative pipe volume change of 21±5% was observed when using the experimental setup, compared with the value of approximately 17±1% when this quantity was calculated from the mathematical model. Volume, axial flow, and pressure changes are in the expected range.


Assuntos
Volume Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Modelos Biológicos , Elasticidade , Humanos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA