Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7920): 732-740, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859178

RESUMO

Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Genômica , Sequenciamento Completo do Genoma , África/etnologia , Ásia/etnologia , Estudos de Coortes , Sequência Conservada , Éxons/genética , Genoma Humano/genética , Haplótipos/genética , Humanos , Mutação INDEL , Irlanda/etnologia , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética , Reino Unido
2.
Ann Rheum Dis ; 82(3): 384-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36376028

RESUMO

OBJECTIVES: Osteoarthritis is a common and severe, multifactorial disease with a well-established genetic component. However, little is known about how genetics affect disease progression, and thereby the need for joint placement. Therefore, we aimed to investigate whether the genetic associations of knee and hip osteoarthritis differ between patients treated with joint replacement and patients without joint replacement. METHODS: We included knee and hip osteoarthritis cases along with healthy controls, altogether counting >700 000 individuals. The cases were divided into two groups based on joint replacement status (surgical vs non-surgical) and included in four genome-wide association meta-analyses: surgical knee osteoarthritis (N = 22 525), non-surgical knee osteoarthritis (N = 38 626), surgical hip osteoarthritis (N = 20 221) and non-surgical hip osteoarthritis (N = 17 847). In addition, we tested for genetic correlation between the osteoarthritis groups and the pain phenotypes intervertebral disc disorder, dorsalgia, fibromyalgia, migraine and joint pain. RESULTS: We identified 52 sequence variants associated with knee osteoarthritis (surgical: 17, non-surgical: 3) or hip osteoarthritis (surgical: 34, non-surgical: 1). For the surgical phenotypes, we identified 10 novel variants, including genes involved in autophagy (rs2447606 in ATG7) and mechanotransduction (rs202127176 in PIEZO1). One variant, rs13107325 in SLC39A8, associated more strongly with non-surgical knee osteoarthritis than surgical knee osteoarthritis. For all other variants, significance and effect sizes were higher for the surgical phenotypes. In contrast, genetic correlations with pain phenotypes tended to be stronger in the non-surgical groups. CONCLUSIONS: Our results indicate differences in genetic associations between knee and hip osteoarthritis depending on joint replacement status.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/cirurgia , Osteoartrite do Quadril/complicações , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/complicações , Estudo de Associação Genômica Ampla , Mecanotransdução Celular , Articulação do Joelho/cirurgia , Dor , Canais Iônicos
3.
Ann Rheum Dis ; 82(6): 873-880, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931692

RESUMO

OBJECTIVES: Erosive hand osteoarthritis (EHOA) is a severe subset of hand osteoarthritis (OA). It is unclear if EHOA is genetically different from other forms of OA. Sequence variants at ten loci have been associated with hand OA but none with EHOA. METHODS: We performed meta-analysis of EHOA in 1484 cases and 550 680 controls, from 5 populations. To identify causal genes, we performed eQTL and plasma pQTL analyses, and developed one zebrafish mutant. We analysed associations of variants with other traits and estimated shared genetics between EHOA and other traits. RESULTS: Four common sequence variants associated with EHOA, all with relatively high effect. Rs17013495 (SPP1/MEPE, OR=1.40, p=8.4×10-14) and rs11243284 (6p24.3, OR=1.35, p=4.2×10-11) have not been associated with OA, whereas rs11631127 (ALDH1A2, OR=1.46, p=7.1×10-18), and rs1800801 (MGP, OR=1.37, p=3.6×10-13) have previously been associated with hand OA. The association of rs1800801 (MGP) was consistent with a recessive mode of inheritance in contrast to its additive association with hand OA (OR homozygotes vs non-carriers=2.01, 95% CI 1.71 to 2.37). All four variants associated nominally with finger OA, although with substantially lower effect. We found shared genetic components between EHOA and other OA measures, grip strength, urate levels and gout, but not rheumatoid arthritis. We identified ALDH1A2, MGP and BMP6 as causal genes for EHOA, with loss-of-function Bmp6 zebrafish mutants displaying EHOA-like phenotypes. CONCLUSIONS: We report on significant genetic associations with EHOA. The results support the view of EHOA as a form of severe hand OA and partly separate it from OA in larger joints.


Assuntos
Artrite Reumatoide , Articulação da Mão , Osteoartrite , Animais , Articulação da Mão/diagnóstico por imagem , Peixe-Zebra/genética , Mãos , Osteoartrite/complicações , Artrite Reumatoide/complicações
6.
Ann Rheum Dis ; 80(3): 367-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33055079

RESUMO

BACKGROUND: Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS: We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS: We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.


Assuntos
Articulação da Mão , Osteoartrite , Proteínas Wnt , Análise por Conglomerados , Colágenos Fibrilares/genética , Estudo de Associação Genômica Ampla , Articulação da Mão/diagnóstico por imagem , Humanos , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Fenótipo , Proteínas Wnt/genética
7.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367794

RESUMO

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Europa (Continente)/etnologia , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA , População Branca/genética , Proteínas Wnt/genética
8.
PLoS Genet ; 14(12): e1007813, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30566500

RESUMO

Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health.


Assuntos
Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/genética , Povo Asiático/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , População Branca/genética
9.
Hum Mol Genet ; 26(19): 3850-3858, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934396

RESUMO

Osteoarthritis (OA) is a common complex disease with high public health burden and no curative therapy. High bone mineral density (BMD) is associated with an increased risk of developing OA, suggesting a shared underlying biology. Here, we performed the first systematic overlap analysis of OA and BMD on a genome wide scale. We used summary statistics from the GEFOS consortium for lumbar spine (n = 31,800) and femoral neck (n = 32,961) BMD, and from the arcOGEN consortium for three OA phenotypes (hip, ncases=3,498; knee, ncases=3,266; hip and/or knee, ncases=7,410; ncontrols=11,009). Performing LD score regression we found a significant genetic correlation between the combined OA phenotype (hip and/or knee) and lumbar spine BMD (rg=0.18, P = 2.23 × 10-2), which may be driven by the presence of spinal osteophytes. We identified 143 variants with evidence for cross-phenotype association which we took forward for replication in independent large-scale OA datasets, and subsequent meta-analysis with arcOGEN for a total sample size of up to 23,425 cases and 236,814 controls. We found robustly replicating evidence for association with OA at rs12901071 (OR 1.08 95% CI 1.05-1.11, Pmeta=3.12 × 10-10), an intronic variant in the SMAD3 gene, which is known to play a role in bone remodeling and cartilage maintenance. We were able to confirm expression of SMAD3 in intact and degraded cartilage of the knee and hip. Our findings provide the first systematic evaluation of pleiotropy between OA and BMD, highlight genes with biological relevance to both traits, and establish a robust new OA genetic risk locus at SMAD3.


Assuntos
Densidade Óssea/genética , Osteoartrite/genética , Proteína Smad3/genética , Bases de Dados de Ácidos Nucleicos , Colo do Fêmur/química , Colo do Fêmur/fisiologia , Estudos de Associação Genética/métodos , Pleiotropia Genética/genética , Humanos , Vértebras Lombares/fisiologia , Osteoartrite/etiologia , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Fatores de Risco , Proteína Smad3/metabolismo
10.
Nature ; 497(7450): 517-20, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23644456

RESUMO

Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C>T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C>T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C>T mutation overlaps that of Lgr4 mutant mice.


Assuntos
Neoplasias do Sistema Biliar/genética , Densidade Óssea/genética , Carcinoma de Células Escamosas/genética , Códon sem Sentido/genética , Fraturas por Osteoporose/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias Cutâneas/genética , Desequilíbrio Hidroeletrolítico/genética , Animais , Austrália , Dinamarca , Regulação para Baixo/genética , Feminino , Heterozigoto , Humanos , Islândia , Masculino , Menarca/genética , Camundongos , Camundongos Knockout , Fenótipo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Testosterona/análise
11.
PLoS Genet ; 12(10): e1006260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701424

RESUMO

Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10-8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies.


Assuntos
Osteoartrite do Quadril/genética , Fosfatidilinositol 3-Quinases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fator de Crescimento Transformador alfa/genética , Trealase/genética , Idoso , Idoso de 80 Anos ou mais , Cartilagem/patologia , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/patologia , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética
12.
Nat Genet ; 39(6): 770-5, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17460697

RESUMO

We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13-1.27), P = 7.7 x 10(-9)) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11-1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31-1.72) and 1.55 (1.23-1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.


Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Adulto , Glicemia/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Feminino , Frequência do Gene , Genoma Humano , Humanos , Insulina/metabolismo , Secreção de Insulina , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição TCF/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteína 2 Semelhante ao Fator 7 de Transcrição
13.
J Med Genet ; 51(2): 122-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24343915

RESUMO

BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk. AIM: To identify CNVs associated with osteoporotic bone fracture risk. METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies. RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p = 8.69 × 10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p = 0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk. CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.


Assuntos
Cromossomos Humanos Par 6/genética , Osteoporose/genética , Fraturas por Osteoporose/genética , Estudos de Casos e Controles , Pontos de Quebra do Cromossomo , Estudos de Coortes , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Deleção de Genes , Dosagem de Genes , Estudo de Associação Genômica Ampla , Humanos , Cadeias de Markov , Pessoa de Meia-Idade
14.
Nat Genet ; 38(3): 320-3, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415884

RESUMO

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 x 10(-9)). This was replicated in a Danish cohort (P = 4.8 x 10(-3)) and in a US cohort (P = 3.3 x 10(-9)). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box-containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição TCF/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 10 , Estudos de Coortes , Dinamarca , Frequência do Gene , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Humanos , Íntrons , Repetições de Microssatélites , Dados de Sequência Molecular , Valores de Referência , Proteína 2 Semelhante ao Fator 7 de Transcrição
15.
Am J Hum Genet ; 89(3): 446-50, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21871595

RESUMO

Osteoarthritis (OA) is a prevalent, heritable degenerative joint disease with a substantial public health impact. We used a 1000-Genomes-Project-based imputation in a genome-wide association scan for osteoarthritis (3177 OA cases and 4894 controls) to detect a previously unidentified risk locus. We discovered a small disease-associated set of variants on chromosome 13. Through large-scale replication, we establish a robust association with SNPs in MCF2L (rs11842874, combined odds ratio [95% confidence interval] 1.17 [1.11-1.23], p = 2.1 × 10(-8)) across a total of 19,041 OA cases and 24,504 controls of European descent. This risk locus represents the third established signal for OA overall. MCF2L regulates a nerve growth factor (NGF), and treatment with a humanized monoclonal antibody against NGF is associated with reduction in pain and improvement in function for knee OA patients.


Assuntos
Cromossomos Humanos Par 13/genética , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Osteoartrite/genética , Anticorpos Monoclonais/uso terapêutico , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fator de Crescimento Neural/imunologia , Fator de Crescimento Neural/metabolismo , Razão de Chances , Osteoartrite/imunologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Troca de Nucleotídeo Guanina Rho , População Branca/genética
16.
Ann Rheum Dis ; 73(12): 2130-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23989986

RESUMO

OBJECTIVES: Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects. METHODS: We performed a two-stage meta-analysis on more than 78,000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for 'in silico' or 'de novo' replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used. RESULTS: We accumulated 11,277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9×10(-9) and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p=5.6×10(-8)) and follow-up studies (p=7.3×10(-4)). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9×10(-7), OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2×10(-6), OR=1.27 in male specific analysis). CONCLUSIONS: Novel genetic loci for hip OA were found in this meta-analysis of GWAS.


Assuntos
Osteoartrite do Quadril/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas HMGN/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas Imediatamente Precoces/genética , Masculino , Coativador 3 de Receptor Nuclear/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores Sexuais , População Branca/genética , Quinases Dyrk
17.
Nature ; 452(7186): 423-8, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18344981

RESUMO

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Obesidade/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sangue/metabolismo , Índice de Massa Corporal , Estudos de Coortes , Feminino , Genoma Humano , Humanos , Islândia , Escore Lod , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Tamanho da Amostra , Relação Cintura-Quadril , População Branca/genética
18.
PLoS Genet ; 7(4): e1001372, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533022

RESUMO

Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.


Assuntos
Densidade Óssea , Fraturas Ósseas/genética , Estudo de Associação Genômica Ampla , N-Acetilgalactosaminiltransferases/genética , Osteoporose Pós-Menopausa/genética , Trombospondinas/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Canais de Cloreto/genética , Cromossomos Humanos/genética , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Sialoproteína de Ligação à Integrina/genética , Proteínas de Ligação a TGF-beta Latente/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Mutação , Polimorfismo de Nucleotídeo Único , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fatores de Transcrição SOXC/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
19.
J Clin Endocrinol Metab ; 109(8): e1608-e1615, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38118020

RESUMO

CONTEXT: It is not clear if antagonizing the GIP (glucose-dependent insulinotropic polypeptide) receptor (GIPR) for treatment of obesity is likely to increase the risk of fractures, or to lower bone mineral density (BMD) beyond what is expected with rapid weight loss. OBJECTIVE: The objective of this study was to investigate the risk of fracture and BMD of sequence variants in GIPR that reduce the activity of the GIP receptor and have been associated with reduced body mass index (BMI). METHODS: We analyzed the association of 3 missense variants in GIPR, a common variant, rs1800437 (p.Glu354Gln), and 2 rare variants, rs139215588 (p.Arg190Gln) and rs143430880 (p.Glu288Gly), as well as a burden of predicted loss-of-function (LoF) variants with risk of fracture and with BMD in a large meta-analysis of up to 1.2 million participants. We analyzed associations with fractures at different skeletal sites in the general population: any fractures, hip fractures, vertebral fractures and forearm fractures, and specifically nonvertebral and osteoporotic fractures in postmenopausal women. We also evaluated associations with BMD at the lumbar spine, femoral neck, and total body measured with dual-energy x-ray absorptiometry (DXA), and with BMD estimated from heel ultrasound (eBMD). RESULTS: None of the 3 missense variants in GIPR was significantly associated with increased risk of fractures or with lower BMD. Burden of LoF variants in GIPR was not associated with fractures or with BMD measured with clinically validated DXA, but was associated with eBMD. CONCLUSION: Missense variants in GIPR, or burden of LoF variants in the gene, are not associated with risk of fractures or with lower BMD.


Assuntos
Densidade Óssea , Fraturas Ósseas , Obesidade , Receptores dos Hormônios Gastrointestinais , Humanos , Densidade Óssea/genética , Feminino , Receptores dos Hormônios Gastrointestinais/genética , Fraturas Ósseas/genética , Fraturas Ósseas/epidemiologia , Obesidade/genética , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Mutação de Sentido Incorreto , Predisposição Genética para Doença , Índice de Massa Corporal , Fatores de Risco
20.
Trends Endocrinol Metab ; 35(6): 478-489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553405

RESUMO

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.


Assuntos
Fenótipo , Animais , Humanos , Músculo Esquelético/metabolismo , Peixe-Zebra , Camundongos , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Doenças Musculoesqueléticas/genética , Osteoporose/metabolismo , Osteoporose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA