Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850162

RESUMO

MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.

2.
J Virol ; 96(10): e0187521, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475668

RESUMO

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.


Assuntos
Fator Regulador 3 de Interferon , Interferon beta , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Repressoras , Papillomavirus Humano 16/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Mucosa/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Pele/virologia
3.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115863

RESUMO

The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity (∼67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.


Assuntos
Papillomavirus Humano 31/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Papillomavirus Humano 16/química , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 31/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Especificidade da Espécie , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química
4.
Nucleic Acids Res ; 46(20): 10709-10723, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30289546

RESUMO

Many evolutionarily conserved microRNAs (miRNAs) in plants regulate transcription factors with key functions in development. Hence, mutations in the core components of the miRNA biogenesis machinery cause strong growth defects. An essential aspect of miRNA biogenesis is the precise excision of the small RNA from its precursor. In plants, miRNA precursors are largely variable in size and shape and can be processed by different modes. Here, we optimized an approach to detect processing intermediates during miRNA biogenesis. We characterized a miRNA whose processing is triggered by a terminal branched loop. Plant miRNA processing can be initiated by internal bubbles, small terminal loops or branched loops followed by dsRNA segments of 15-17 bp. Interestingly, precision and efficiency vary with the processing modes. Despite the various potential structural determinants present in a single a miRNA precursor, DCL1 is mostly guided by a predominant structural region in each precursor in wild-type plants. However, our studies in fiery1, hyl1 and se mutants revealed the existence of cleavage signatures consistent with the recognition of alternative processing determinants. The results provide a general view of the mechanisms underlying the specificity of miRNA biogenesis in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas de Ligação a RNA/genética , Sítios de Ligação , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , MicroRNAs/biossíntese , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Processamento Pós-Transcricional do RNA , RNA de Cadeia Dupla/genética , Plântula , Transcrição Gênica , Transgenes
5.
Phys Chem Chem Phys ; 20(14): 9376-9388, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565070

RESUMO

The intrinsically disordered protein domain DCL1-A is the first report of a complete double stranded RNA binding domain folding upon binding. DCL1-A recognizes the dsRNA by acquiring a well-folded structure after engagement with its interaction partner. Despite the structural characterization of the interaction complex underlying the recognition of dsRNA has been established, the dynamics of disorder-to-order transitions in the binding process remains elusive. Here we have developed a coarse-grained structure-based model with consideration of electrostatic interactions to explore the mechanism of the coupled folding and binding. Our approach led to remarkable agreements with both experimental and theoretical results. We quantified the global binding-folding landscape, which indicates a synergistic binding induced folding mechanism. We further investigated the effect of electrostatic interactions in this coupled folding and binding process. It reveals that non-native electrostatic interactions dominate the initial stage of the recognition. Our results help improve our understanding of the induced folding of the IDP DCL1-A upon binding to dsRNA. Such methods developed here can be applied for further explorations of the dynamics of coupled folding and binding systems.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Dobramento de Proteína , RNA/química , Ribonuclease III/química , Simulação por Computador , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
6.
Phys Chem Chem Phys ; 20(16): 11237-11246, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632904

RESUMO

DCL1 is the ribonuclease that carries out miRNA biogenesis in plants. Substrate pri-miRNA recognition by DCL1 requires two double stranded RNA binding domains located at the C-terminus of the protein. We have previously shown that the first of these domains, DCL1-A, is intrinsically disordered and folds upon binding pri-miRNA. Integrating NMR and SAXS data, we study here the conformational landscape of free DCL1-A through an ensemble description. Our results reveal that secondary structure elements, corresponding to the folded form of the protein, are transiently populated in the unbound state. The conformation of one of the dsRNA binding regions in the free protein shows that, at a local level, RNA recognition proceeds through a conformational selection mechanism. We further explored the stability of the preformed structural elements via temperature and urea destabilization. The C-terminal helix is halfway on the folding pathway in free DCL1-A, constituting a potential nucleation site for the final folding of the protein. In contrast, the N-terminal helix adopts stable non-native structures that could hinder the correct folding of the protein in the absence of RNA. This description of the unfolded form allows us to understand details of the mechanism of binding-induced folding of the protein.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , MicroRNAs/química , Modelos Químicos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Ribonuclease III/química , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
7.
Nucleic Acids Res ; 43(13): 6607-19, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26101256

RESUMO

DCL1 is the ribonuclease that carries out miRNA biogenesis in plants. The enzyme has two tandem double stranded RNA binding domains (dsRBDs) in its C-terminus. Here we show that the first of these domains binds precursor RNA fragments when isolated and cooperates with the second domain in the recognition of substrate RNA. Remarkably, despite showing RNA binding activity, this domain is intrinsically disordered. We found that it acquires a folded conformation when bound to its substrate, being the first report of a complete dsRBD folding upon binding. The free unfolded form shows tendency to adopt folded conformations, and goes through an unfolded bound state prior to the folding event. The significance of these results is discussed by comparison with the behavior of other dsRBDs.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Proteínas de Ligação a RNA/química , Ribonuclease III/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Dobramento de RNA , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
8.
Arch Biochem Biophys ; 596: 118-25, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987516

RESUMO

Double stranded RNA (dsRNA) participates in several biological processes, where RNA molecules acquire secondary structure inside the cell through base complementarity. The double stranded RNA binding domain (dsRBD) is one of the main protein folds that is able to recognize and bind to dsRNA regions. The N-terminal dsRBD of DCL1 in Arabidopsis thaliana (DCL1-1), in contrast to other studied dsRBDs, lacks a stable structure, behaving as an intrinsically disordered protein. DCL1-1 does however recognize dsRNA by acquiring a canonical fold in the presence of its substrate. Here we present a detailed modeling and molecular dynamics study of dsRNA recognition by DCL1-1. We found that DCL1-1 forms stable complexes with different RNAs and we characterized the residues involved in binding. Although the domain shows a binding loop substantially shorter than other homologs, it can still interact with the dsRNA and results in bending of the dsRNA A-type helix. Furthermore, we found that R8, a non-conserved residue located in the first dsRNA binding region, recognizes preferentially mismatched base pairs. We discuss our findings in the context of the function of DCL1-1 within the microRNA processing complex.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Ciclo Celular/química , MicroRNAs/química , Modelos Químicos , Simulação de Dinâmica Molecular , RNA de Cadeia Dupla/química , RNA de Plantas/química , Ribonuclease III/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , MicroRNAs/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/metabolismo , Ribonuclease III/metabolismo
9.
Biochemistry ; 51(51): 10159-66, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23194006

RESUMO

Dicer-like ribonuclease III enzymes are involved in different paths related to RNA silencing in plants. Little is known about the structural aspects of these processes. Here we present a structural characterization of the second double-stranded RNA binding domain (dsRBD) of DCL1, which is presumed to participate in pri-micro-RNA recognition and subcellular localization of this protein. We determined the solution structure and found that it has a canonical fold but bears some variation with respect to other homologous domains. We also found that this domain binds both double-stranded RNA and double-stranded DNA, in contrast to most dsRBDs. Our characterization shows that this domain likely has functions other than substrate recognition and binding.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/química , DNA/metabolismo , MicroRNAs/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
10.
Cells ; 10(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918497

RESUMO

The lymphatic system serves key functions in maintaining fluid homeostasis, the uptake of dietary fats in the small intestine, and the trafficking of immune cells. Almost all vascularized peripheral tissues and organs contain lymphatic vessels. The brain parenchyma, however, is considered immune privileged and devoid of lymphatic structures. This contrasts with the notion that the brain is metabolically extremely active, produces large amounts of waste and metabolites that need to be cleared, and is especially sensitive to edema formation. Recently, meningeal lymphatic vessels in mammals and zebrafish have been (re-)discovered, but how they contribute to fluid drainage is still not fully understood. Here, we discuss these meningeal vessel systems as well as a newly described cell population in the zebrafish and mouse meninges. These cells, termed brain lymphatic endothelial cells/Fluorescent Granular Perithelial cells/meningeal mural lymphatic endothelial cells in fish, and Leptomeningeal Lymphatic Endothelial Cells in mice, exhibit remarkable features. They have a typical lymphatic endothelial gene expression signature but do not form vessels and rather constitute a meshwork of single cells, covering the brain surface.


Assuntos
Encéfalo/citologia , Células Endoteliais/citologia , Sistema Linfático/citologia , Meninges/citologia , Animais , Humanos , Linfangiogênese , Substâncias Macromoleculares/metabolismo
11.
Cancer Lett ; 470: 115-125, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693922

RESUMO

Despite prophylactic vaccination campaigns, human papillomavirus (HPV)-induced cancers still represent a major medical issue for global population, thus specific anti-HPV drugs are needed. Since the ability of HPV E6 oncoprotein to promote p53 degradation is linked to tumor progression, E6 has been proposed as an ideal target for cancer treatment. Using the crystal structure of the E6/E6AP/p53 complex, we performed an in silico screening of small-molecule libraries against a highly conserved alpha-helix in the N-terminal domain of E6 involved in the E6-p53 interaction. We discovered a compound able to inhibit the E6-mediated degradation of p53 through disruption of E6-p53 binding both in vitro and in cells. This compound could restore p53 intracellular levels and transcriptional activity, reduce the viability and proliferation of HPV-positive cancer cells, and block 3D cervospheres formation. Mechanistic studies revealed that the compound anti-tumor activity mainly relies on induction of cell cycle arrest and senescence. Our data demonstrate that the disruption of the direct E6-p53 interaction can be obtained with a small-molecule compound leading to specific antitumoral activity in HPV-positive cancer cells and thus represents a new approach for anti-HPV drug development.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Oncogênicas Virais/antagonistas & inibidores , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Cristalografia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/patologia , Neoplasias/virologia , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Esferoides Celulares , Relação Estrutura-Atividade
12.
Viruses ; 10(1)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342959

RESUMO

Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.


Assuntos
Proteínas Oncogênicas Virais/química , Papillomaviridae/química , Proteínas E7 de Papillomavirus/química , Proteínas Repressoras/química , Interações Hospedeiro-Patógeno , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
13.
Cell Rep ; 23(13): 3759-3768, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949761

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs.


Assuntos
Autoanticorpos/líquido cefalorraquidiano , Encefalite/patologia , Doença de Hashimoto/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Encefalite/metabolismo , Feminino , Doença de Hashimoto/metabolismo , Humanos , Microscopia de Fluorescência , Método de Monte Carlo , Nanoestruturas/química , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptor EphB2/antagonistas & inibidores , Receptor EphB2/metabolismo , Receptores de N-Metil-D-Aspartato/imunologia , Receptores de Neurotransmissores/metabolismo
14.
ACS Appl Mater Interfaces ; 8(24): 15058-66, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27243266

RESUMO

Surfaces contaminated with pathogenic microorganisms contribute to their transmission and spreading. The development of "active surfaces" that can reduce or eliminate this contamination necessitates a detailed understanding of the molecular mechanisms of interactions between the surfaces and the microorganisms. Few studies have shown that, among the different surface characteristics, the wetting properties play an important role in reducing virus infectivity. Here, we systematically tailored the wetting characteristics of flat and nanostructured glass surfaces by functionalizing them with alkyl- and fluoro-silanes. We studied the effects of these functionalized surfaces on the infectivity of Influenza A viruses using a number of experimental and computational methods including real-time fluorescence microscopy and molecular dynamics simulations. Overall, we show that surfaces that are simultaneously hydrophobic and oleophilic are more efficient in deactivating enveloped viruses. Our results suggest that the deactivation mechanism likely involves disruption of the viral membrane upon its contact with the alkyl chains. Moreover, enhancing these specific wetting characteristics by surface nanostructuring led to an increased deactivation of viruses. These combined features make these substrates highly promising for applications in hospitals and similar infrastructures where antiviral surfaces can be crucial.


Assuntos
Vírus da Influenza A/patogenicidade , Molhabilidade , Vidro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoestruturas , Propriedades de Superfície , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA