Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(3): H705-H714, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241007

RESUMO

Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.


Assuntos
Pentoxifilina , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Hemorreologia , Fator de Necrose Tumoral alfa , Hipóxia , Oxigênio , Aclimatação/fisiologia , Inflamação/complicações , Gases , Circulação Cerebrovascular , Altitude
2.
Exp Physiol ; 108(1): 111-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404588

RESUMO

NEW FINDINGS: What is the central question of this study? How does hypoxic pulmonary vasoconstriction and the response to supplemental oxygen change over time at high altitude? What is the main finding and its importance? Lowlanders and partially de-acclimatized Sherpa both demonstrated pulmonary vascular responsiveness to supplemental oxygen that was maintained for 12 days' exposure to progressively increasing altitude. An additional 2 weeks' acclimatization at 5050 m altitude rendered the pulmonary vasculature minimally responsive to oxygen similar to the fully acclimatized non-ascent Sherpa. Additional hypoxic exposure at that time point did not augment hypoxic pulmonary vasoconstriction. ABSTRACT: Prolonged alveolar hypoxia leads to pulmonary vascular remodelling. We examined the time course at altitude, over which hypoxic pulmonary vasoconstriction goes from being acutely reversible to potentially irreversible. Study subjects were lowlanders (n = 20) and two Sherpa groups. All Sherpa were born and raised at altitude. One group (ascent Sherpa, n = 11) left altitude and after de-acclimatization in Kathmandu for ∼7 days re-ascended with the lowlanders over 8-10 days to 5050 m. The second Sherpa group (non-ascent Sherpa, n = 12) remained continuously at altitude. Pulmonary artery systolic pressure (PASP) and pulmonary vascular resistance (PVR) were measured while breathing ambient air and following supplemental oxygen. During ascent PASP and PVR increased in lowlanders and ascent Sherpa; however, with supplemental oxygen, lowlanders had significantly greater decrease in PASP (P = 0.02) and PVR (P = 0.02). After ∼14 days at 5050 m, PASP decreased with supplemental oxygen (mean decrease: 3.9 mmHg, 95% CI 2.1-5.7 mmHg, P < 0.001); however, PVR was unchanged (P = 0.49). In conclusion, PASP and PVR increased with gradual ascent to altitude and decreased via oxygen supplementation in both lowlanders and ascent Sherpa. Following ∼14 days at 5050 m altitude, there was no change in PVR to hypoxia or O2  supplementation in lowlanders or either Sherpa group. These data show that both duration of exposure and residential altitude influence the pulmonary vascular responses to hypoxia.


Assuntos
Doença da Altitude , Altitude , Humanos , Hipóxia , Aclimatação/fisiologia , Oxigênio
3.
J Physiol ; 599(5): 1685-1708, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442904

RESUMO

KEY POINTS: Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT: To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( PIO2  = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.


Assuntos
Altitude , Vasoconstrição , Aclimatação , Humanos , Hipóxia , Ferro
4.
J Physiol ; 597(4): 1059-1072, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29808473

RESUMO

KEY POINTS: We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT: We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.


Assuntos
Altitude , Tolerância ao Exercício , Hipovolemia/fisiopatologia , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Vasoconstrição , Função Ventricular , Aclimatação , Adulto , Diástole , Humanos , Pulmão/fisiologia , Pulmão/fisiopatologia , Masculino , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Citrato de Sildenafila/farmacologia , Vasodilatadores/farmacologia
5.
Am J Physiol Heart Circ Physiol ; 315(1): H132-H140, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29600897

RESUMO

It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial Po2 and Pco2 or if coronary vascular responses are the result of concomitant increases in myocardial O2 consumption/demand ([Formula: see text]). We hypothesized that the coronary vascular response to Po2 and Pco2 would be attenuated in healthy men when [Formula: see text] was attenuated with ß1-adrenergic receptor blockade. Healthy men (age: 25 ± 1 yr, n = 11) received intravenous esmolol (ß1-adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized crossover study and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and after 5 min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LADV; Doppler echocardiography), heart rate, and arterial blood pressure. LADV values at the end of each hypoxic condition were compared between esmolol and placebo. The rate-pressure product (RPP) and left ventricular mechanical energy (MELV) were calculated as indexes of [Formula: see text]. All gas manipulations augmented RPP, MELV, and LADV, but only RPP and MELV were attenuated (4-18%) after ß1-adrenergic receptor blockade ( P < 0.05). Despite attenuated RPP and MELV responses, ß1-adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response compared with placebo during poikilocapnic hypoxia (29.4 ± 2.2 vs. 27.3 ± 1.6 cm/s) and isocapnic hypoxia (29.5 ± 1.5 vs. 30.3 ± 2.2 cm/s). Hypercapnic hypoxia elicited a feedforward coronary dilation that was blocked by ß1-adrenergic receptor blockade. These results indicate a direct influence of arterial Po2 on coronary vascular regulation that is independent of [Formula: see text]. NEW & NOTEWORTHY In humans, arterial hypoxemia led to an increase in epicardial coronary artery blood velocity. ß1-Adrenergic receptor blockade did not diminish the hypoxemic coronary response despite reduced myocardial O2 demand. These data indicate hypoxemia can regulate coronary blood flow independent of myocardial O2 consumption. A plateau in the mean left anterior descending coronary artery blood velocity-rate-pressure product relationship suggested ß1-adrenergic receptor-mediated, feedforward epicardial coronary artery dilation. In addition, we observed a synergistic effect of Po2 and Pco2 during hypercapnic hypoxia.


Assuntos
Dióxido de Carbono/metabolismo , Vasos Coronários/fisiologia , Miocárdio/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Vasodilatação , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Vasos Coronários/efeitos dos fármacos , Frequência Cardíaca , Humanos , Masculino , Propanolaminas/farmacologia , Função Ventricular Esquerda
6.
J Physiol ; 595(5): 1671-1686, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28032333

RESUMO

KEY POINTS: Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. ABSTRACT: We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α1 -adrenergic blockade (prazosin; 0.05 mg kg -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow-mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate-intensity exercise at sea level was abolished via α1 -adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate-intensity exercise, and administration of α1 -adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α1 -adrenergic pathway and endothelial function.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Artéria Braquial/efeitos dos fármacos , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Prazosina/farmacologia , Adulto , Altitude , Artéria Braquial/fisiologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Vasodilatação/efeitos dos fármacos
7.
Exp Physiol ; 102(9): 1143-1157, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28699679

RESUMO

NEW FINDINGS: What is the central question of this study? It is suggested that remote ischemic preconditioning (RIPC) might offer protection against ischaemia-reperfusion injuries, but the utility of RIPC in high-altitude settings remains unclear. What is the main finding and its importance? We found that RIPC offers no vascular protection relative to pulmonary artery pressure or peripheral endothelial function during acute, normobaric hypoxia and at high altitude in young, healthy adults. However, peripheral chemosensitivity was heightened 24 h after RIPC at high altitude. Application of repeated short-duration bouts of ischaemia to the limbs, termed remote ischemic preconditioning (RIPC), is a novel technique that might have protective effects on vascular function during hypoxic exposures. In separate parallel-design studies, at sea level (SL; n = 16) and after 8-12 days at high altitude (HA; n = 12; White Mountain, 3800 m), participants underwent either a sham protocol or one session of four bouts of 5 min of dual-thigh-cuff occlusion with 5 min recovery. Brachial artery flow-mediated dilatation (FMD; ultrasound), pulmonary artery systolic pressure (PASP; echocardiography) and internal carotid artery (ICA) flow (ultrasound) were measured at SL in normoxia and isocapnic hypoxia (end-tidal PO2 maintained at 50 mmHg) and during normal breathing at HA. The hypoxic ventilatory response (HVR) was measured at each location. All measures at SL and HA were obtained at baseline (BL) and at 1, 24 and 48 h post-RIPC or sham. At SL, RIPC produced no changes in FMD, PASP, ICA flow, end-tidal gases or HVR in normoxia or hypoxia. At HA, although HVR increased 24 h post-RIPC compared with BL [2.05 ± 1.4 versus 3.21 ± 1.2 l min-1  (% arterial O2 saturation)-1 , P < 0.01], there were no significant differences in FMD, PASP, ICA flow and resting end-tidal gases. Accordingly, a single session of RIPC is insufficient to evoke changes in peripheral, pulmonary and cerebral vascular function in healthy adults. Although chemosensitivity might increase after RIPC at HA, this did not confer any vascular changes. The utility of a single RIPC session seems unremarkable during acute and chronic hypoxia.


Assuntos
Artéria Braquial/fisiopatologia , Hipóxia/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Aclimatação/fisiologia , Adulto , Altitude , Pressão Sanguínea , Ecocardiografia/métodos , Feminino , Humanos , Precondicionamento Isquêmico/métodos , Masculino , Respiração , Adulto Jovem
8.
High Alt Med Biol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966963

RESUMO

Foster, Katharine, James D. Anholm, Gary Foster, Suman Thapamagar, and Prajan Subedi. Effects of naltrexone on sleep quality and periodic breathing at high altitude. High Alt Med Biol. 00:000-000, 2024. Objective: This study examined the effects of naltrexone on breathing and sleep at high altitude. Mu-opioid receptor (MOR) agonists have a depressive effect on respiration. Naltrexone is known to block the MOR. We hypothesized that MOR blockade with naltrexone would result in higher nocturnal oxygen saturations, fewer apneas, and improved sleep at high altitude. Methods: This double-blind, placebo-controlled, crossover study included nine healthy volunteers (four females, five males) aged 27.9 (4.6) (mean [standard deviation]) years. Two overnight trips spaced at least 2 weeks apart took participants from Loma Linda, CA (355 m) to the Barcroft Laboratory, CA (3,810 m) for each arm. Participants ingested either 50 mg naltrexone or matching placebo at bedtime. Sleep metrics were recorded using an ambulatory physiological sleep monitor (APSM). Subjective data were measured with the Groningen Sleep Quality Scale, Stanford Sleepiness Scale, and the 2018 Lake Louise Score (LLS) for acute mountain sickness (AMS). Results: Mean overnight SpO2 was lower after taking naltrexone, 81% (6) versus 83% (4) (mean difference 1.9% [2.1, 95% confidence interval or CI = 0.1-3.6, p = 0.040]). The lowest overnight SpO2 (nadir) was lower on naltrexone 70% (6) versus 74% (4) (dif. 4.6% [4.3], CI = 1.0-8.2, p = 0.020). Total sleep time and total apnea-hypopnea index were unchanged. Subjective sleep quality was significantly worse on naltrexone measured via the Groningen Sleep Quality Scale (p = 0.033) and Stanford Sleepiness Scale (p = 0.038). AMS measured via LLS was significantly worse while taking naltrexone (p = 0.025). Conclusion: Contrary to our hypothesis, this study demonstrated a significant decrease in nocturnal oxygen saturation, worse sleep quality, and AMS scores. Further characterization of the MOR's effects on sleep and AMS is needed to evaluate potential exacerbating mechanisms for AMS and poor sleep quality at altitude.

9.
J Cereb Blood Flow Metab ; 43(7): 1166-1179, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883428

RESUMO

Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature. Therefore, we examined whether: 1) CBF would increase with iron depletion (via chelation) and decrease with repletion (via iron infusion) at high-altitude, and 2) explore whether genotypic advantages of highlanders extend to HIF-mediated regulation of CBF. In a double-blinded and block-randomized design, CBF was assessed in 82 healthy participants (38 lowlanders, 20 Sherpas and 24 Andeans), before and after the infusion of either: iron(III)-hydroxide sucrose, desferrioxamine or saline. Across both lowlanders and highlanders, baseline iron levels contributed to the variability in cerebral hypoxic reactivity at high altitude (R2 = 0.174, P < 0.001). At 5,050 m, CBF in lowlanders and Sherpa were unaltered by desferrioxamine or iron. At 4,300 m, iron infusion led to 4 ± 10% reduction in CBF (main effect of time p = 0.043) in lowlanders and Andeans. Iron status may provide a novel, albeit subtle, influence on CBF that is potentially dependent on the severity and length-of-stay at high altitude.


Assuntos
Doença da Altitude , Altitude , Humanos , Aclimatação/fisiologia , Desferroxamina , Compostos Férricos , Hipóxia , Circulação Cerebrovascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA