Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
F1000Res ; 10: 246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621504

RESUMO

In October 2020, 62 scientists from nine nations worked together remotely in the Second Baylor College of Medicine & DNAnexus hackathon, focusing on different related topics on Structural Variation, Pan-genomes, and SARS-CoV-2 related research.   The overarching focus was to assess the current status of the field and identify the remaining challenges. Furthermore, how to combine the strengths of the different interests to drive research and method development forward. Over the four days, eight groups each designed and developed new open-source methods to improve the identification and analysis of variations among species, including humans and SARS-CoV-2. These included improvements in SV calling, genotyping, annotations and filtering. Together with advancements in benchmarking existing methods. Furthermore, groups focused on the diversity of SARS-CoV-2. Daily discussion summary and methods are available publicly at  https://github.com/collaborativebioinformatics provides valuable insights for both participants and the research community.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Genoma Viral , Humanos , Vertebrados
2.
Nanotechnology ; 20(8): 085703, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19417464

RESUMO

Nanoscale design of Ni-Al alloys was performed to optimize the phase transformation behavior. The distribution of nickel and aluminum atoms was identified as a key parameter in the phase transformation process. A design criterion based on thermal expansion asymmetry was proposed. The effectiveness of the design criterion was validated using molecular dynamics simulations.


Assuntos
Ligas/química , Alumínio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Simulação por Computador , Desenho Assistido por Computador , Conformação Molecular
3.
Nanotechnology ; 19(28): 285706, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-21828740

RESUMO

Inspired by the need for an efficient molecular simulation technique, we have developed engineering molecular mechanics (EMM) as an alternative molecular simulation technique to model high temperature (T>0 K) phenomena. EMM simulations are significantly more computationally efficient than conventional techniques such as molecular dynamics simulations. The advantage of EMM is achieved by converting the dynamic atomistic system at high temperature (T>0 K) into an equivalent static system. Fundamentals of the EMM methodology are derived using thermal expansion to modify the interatomic potential. Temperature dependent interatomic potentials are developed to account for the temperature effect. The efficiency of EMM simulations is demonstrated by simulating the temperature dependence of elastic constants of copper and nickel and the thermal stress developed in a confined copper system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA