Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Chem ; 96(8): 3284-3290, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355104

RESUMO

Nanoparticles (NPs) are utilized for the functionalization of composite materials and nanofluids. Although oxide NPs (e.g., silica (SiO2)) exhibit less dispersibility in organic solvents or polymers due to their hydrophilic surface, the surface modification using silane coupling agents can improve their dispersibility in media with low dielectric constants. Herein, SiO2 NPs were functionalized using octyltriethoxysilane (OTES, C8) and dodecyltriethoxysilane (DTES, C12), wherein the degrees of surface modification of SiO2@C8 and SiO2@C12 were quantitatively evaluated based on the ratio of modifier to surface silanol group (θ) and the volume fraction of organic modifier to total particle volume (ϕR). The variations of surface properties were revealed by analyzing the Hansen solubility parameters (HSP). Particularly, the surface modification using OTES or DTES significantly affected the polarity (δP) of NPs. The local dielectric environments of surface-modified SiO2 NPs were characterized using a solvatochromic dye, Laurdan. By analyzing the peak position of the steady-state emission spectrum of Laurdan in a NP suspension, the apparent dielectric environments surrounding NPs (εapp) were obtained. A good correlation between ϕR and εapp was observed, indicating that ϕR is a reliable quantity for understanding the properties of surface-modified NPs. Furthermore, the generalized polarization (GP) of NPs was investigated. The surface-modified SiO2 NPs with higher ϕR (≥0.15) exhibited GP > 0, suggesting that the modifiers are well-organized on the surface of NPs. The localized dielectric environment surrounding NPs could be predicted by analyzing the volume fraction of nonpolar moieties derived from modifiers. Alternatively, εapp and GP can be utilized for understanding the properties of inorganic-organic hybrid NPs.

2.
Langmuir ; 38(48): 14695-14703, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36421004

RESUMO

Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.


Assuntos
Exossomos , Fluidez de Membrana , Espectrometria de Fluorescência , Bicamadas Lipídicas/química , Exossomos/metabolismo , Membrana Celular/metabolismo
3.
Langmuir ; 37(22): 6811-6818, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044542

RESUMO

The Belousov-Zhabotinsky (BZ) reaction is an oscillating reaction due to periodic oscillations that happen in the concentration of some intermediates. Such systems can be applied together with hydrophobic membranes to create an autonomous behavior in artificial systems. However, because of a complex set of reactions happening in such systems, the interferences caused by hydrophobic membranes are not easily understood. In this study, we tested lipid membranes composed of trimethylammonium-propane (TAP) and phosphate (PA) lipids in an attempt to break down how the polar region of phosphatidylcholine (PC) lipid membranes affect the BZ reaction. According to our findings, the trimethylammonium group and membrane fluidity are crucial to change the frequency of oscillations in the reaction. In addition, the results also indicate a possible complexation of cerium ions with membranes with a phosphate head group.

4.
Langmuir ; 37(38): 11195-11202, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528800

RESUMO

Numerous research studies have been done for exosomes, particularly focusing on membrane proteins and included nucleic acids, and the volume of the knowledge about the lipids in the exosomal membrane has been increasing. However, the dynamic property of the exosomal membrane is hardly studied. By employing milk exosome as an example, herein the exosomal membrane was characterized focusing on the membrane fluidity and polarity. The lipid composition and phase state of milk exosome (exosome from bovine milk) were estimated. The milk exosome contained enriched Chol (43.6 mol % in total lipid extracts), which made the membrane in the liquid-ordered (lo) phase by interacting with phospholipids. To suggest a model of exosomal vesicle cargo, the liposome compositions that mimic milk exosome were studied: liposomes were made of cholesterol (Chol), milk sphingomyelin (milk SM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By using fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-2-dimethylaminonaphthalene, the microenvironments of submicron-sized membranes of exosome and model liposomes were investigated. The membrane fluidity of milk exosome was slightly higher than those of Chol/milk SM/POPC liposomes with a similar content of Chol, suggesting the presence of enriched unsaturated lipids. The most purposeful membrane property was obtained by the liposome composition of Chol/milk SM/POPC = 40/15/45. From the above, it is concluded that Chol is a fundamental component of the milk exosomal membrane to construct the enriched lo phase, which could increase the membrane rigidity and contribute to the function of exosome.


Assuntos
Fluidez de Membrana , Fosfatidilcolinas , Animais , Bovinos , Colesterol , Bicamadas Lipídicas , Lipossomos , Fosfolipídeos , Esfingomielinas
5.
Langmuir ; 37(14): 4284-4293, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797256

RESUMO

Nanostructured lipid carriers (NLCs) are gaining attention as the new generation of lipid vehicles. These carriers consist of saturated lipids with small drops of liquid oil dispersed into the inner lipid matrix and are stabilized by a surfactant. Conventionally, NLC-based drug delivery systems have been widely studied, and many researchers are looking into the composition of NLC properties to improve the performance of NLCs. The membrane fluidity and polarity of self-assembling lipids are also essential properties that must be affected by membrane compositions; however, such fundamental characteristics have not been studied yet. In this study, NLCs were prepared from cetyl palmitate (CP), caprylic triglyceride (CaTG), and Tween 80 (T80). Structural properties, such as particle size and ζ-potential of the CP/CaTG/T80 ternary mixtures, were investigated. Then, the systematic characterization of self-assembly properties using fluorescence-based analysis was applied for the first time to the NLC system. As a final step, the ternary diagram was developed based on the self-assembly properties to summarize the possible structures formed at different compositions. The results showed four states: micelle-like, oil-in-water (O/W) emulsion-like, solid lipid nanoparticle-like, and intermediate (solid-liquid coexistence). For the purpose of making the lipid matrix more liquified, the heterogeneous state and the disordered state of the O/W emulsion-like structure might fulfill the criteria of NLCs. Finally, the ternary diagram provides new information about the assembly state of NLC constituents that could become an important reference for developing high-performance NLCs.

6.
Langmuir ; 36(12): 3242-3250, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32163713

RESUMO

Bicelles are submicrometer-sized disc-shaped molecular self-assemblies that can be obtained in aqueous solution by dispersing mixtures of certain amphiphiles. Although phospholipid bicelle and phospholipid vesicle assemblies adopt similar lipid bilayer structures, the differences in bilayer characteristics, especially physicochemical properties such as bilayer fluidity, are not clearly understood. Herein, we report the lipid ordering properties of bicelle bilayer membranes based on induced circular dichroism (ICD) and fluorescence polarization analyses using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Bicelles were prepared by using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), while pure DMPC vesicles and pure DHPC micelles were used as references. At temperatures below the phase transition temperature of DMPC, the bicelles showed lower membrane fluidities, whereas DHPC micelles showed higher membrane fluidity, suggesting no significant differences in bilayer fluidity between the bicelle and vesicle assemblies. The ICD signals of DPH were induced only when the membrane was in ordered (solid-ordered or ripple-gel) phases. In the bicelle systems, the ICD of DPH was more significant than that of the DMPC vesicle. The induced chirality of DPH was dependent on the chirality of the bilayer lipid. Compared to that of the DMPC/DHPC bicelle, the ICD of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/DHPC bicelle was higher, while that of the bovine sphingomyelin/DHPC bicelle was lower. Because the lipids are tightly packed in the ordered phase, the ICD intensity reflects the molecular ordering state of the lipids in the bicelle bilayer.

7.
Biophys J ; 116(5): 874-883, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30819567

RESUMO

The hydration properties of the interface between lipid bilayers and bulk water are important for determining membrane characteristics. Here, the emission properties of a solvent-sensitive fluorescence probe, 6-lauroyl-2-dimethylamino naphthalene (Laurdan), were evaluated in lipid bilayer systems composed of the sphingolipids D-erythro-N-palmitoyl-sphingosylphosphorylcholine (PSM) and D-erythro-N-palmitoyl-dihydrosphingomyelin (DHPSM). The glycerophospholipids 1-palmitoyl-2-palmitoyl-sn-glycero-3-phosphocholine and 1-oleoyl-2-oleoyl-sn-glycero-3-phosphocholine were used as controls. The fluorescence properties of Laurdan in sphingolipid bilayers indicated multiple excited states according to the results obtained from the emission spectra, fluorescence anisotropy, and the center-of-mass spectra during the decay time. Deconvolution of the Laurdan emission spectra into four components based on the solvent model enabled us to identify the varieties of hydration and the configurational states derived from intermolecular hydrogen bonding in sphingolipids. Sphingolipids showed specific, interfacial hydration properties stemming from their intra- and intermolecular hydrogen bonds. Particularly, the Laurdan in DHPSM revealed more hydrated properties compared to PSM, even though DHPSM has a higher Tm than PSM. Because DHPSM forms hydrogen bonds with water molecules (in 2NH configurational functional groups), the interfacial region of the DHPSM bilayer was expected to be in a highly polar environment. The careful analysis of Laurdan emission spectra through the four-component deconvolution in this study provides important insights for understanding the multiple polarity in the lipid membrane.


Assuntos
2-Naftilamina/análogos & derivados , Lauratos/química , Bicamadas Lipídicas/química , Modelos Moleculares , Solventes/química , Esfingomielinas/química , 2-Naftilamina/química , Anisotropia , Fatores de Tempo
8.
Langmuir ; 35(32): 10640-10647, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31310548

RESUMO

Sterols such as cholesterol (Chol) and ergosterol (Erg) are known to regulate membrane properties in higher eukaryotes and in lower eukaryotes, respectively. To better understand the modulation of membrane properties by Erg, binary lipid membranes composed of Erg and diacylglycerophosphocholine (PC) were studied in Langmuir monolayer and bilayer vesicle systems. From the excess area measured by pressure-area isotherms, attractive interactions between Erg and saturated PC were significant above the melting temperature (Tm) of PC. Conversely, repulsive interactions were observed at temperatures below Tm. From the analyses of membrane fluidity and polarity using fluorescence probes, similar trends were observed for bilayer systems where Erg had an ordering effect on saturated PC vesicles in the fluid state. However, Chol had a stronger ordering effect than Erg. In unsaturated PC systems, Erg did not alter membrane ordering. These findings demonstrate that the interaction of Erg with the fluid-state PC lipids will maintain lower-eukaryote membranes in a more ordered state, similar to the effect of cholesterol in higher eukaryotes.

9.
Langmuir ; 35(20): 6762-6770, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31021095

RESUMO

The hydration states of the interfacial region of lipid bilayers were investigated on the basis of the time-resolved emission spectra (TRES) analysis of 6-lauroyl-2-dimethylamino naphthalene (Laurdan), a common fluorescence probe used to analyze membrane hydration. TRES derived from long and short lifetime components were extracted from samples of different lipid species: 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC), d- erythro- N-palmitoyl-sphingosylphosphorylcholine (PSM), and a DOPC/PSM binary bilayer system. Neither lifetime component (short or long) corresponded with the hydration properties; the short lifetime component of DOPC (1.97 ns) exhibited a peak at 440 nm, and the long lifetime components of DPPC and PSM (7.76 and 7.77 ns, respectively) exhibited peaks at the same wavelength. This similarity arose from the competition between the collisional quenching and the hydration effects of water molecules. Herein, this phenomenon was investigated using a plot of the lifetime τ and the peak position λ (τ vs λ plot), simultaneously visualizing both effects by deconvoluting the TRES. On the basis of collisional quenching theory, the distribution of the water population per lipid (water map) was generated. According to this theory, the τ vs λ plot was applied to the water map and the calculation of the number of water molecules per lipid, which is consistent with previous reports. This approach provides novel insights for the analysis of molecular hydration states using the fluorescence of Laurdan.

10.
Langmuir ; 34(5): 2081-2088, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309161

RESUMO

Aqueous dispersions of oleic acid (OA) and those modified with 1-oleoylglycerol (monoolein, MO) form various kinds of self-assembled structures: micelles, vesicles, oil-in-water (O/W) emulsions, hexagonal phases, and dispersed cubic phases. Conventionally, these self-assembled structures have been characterized using cryogenic transmission electron microscopy or X-ray diffraction spectroscopy. However, these methodologies require specialized treatment before they can be used, which may lead to the self-assemblies not adopting their true equilibrium state. Herein, we systematically characterized the self-assemblies composed of OA and MO in aqueous solution using Raman spectroscopy and fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). The OA/MO dispersions at pH 5.0 showed increased chain packing in comparison to the OA micelle at pH 11 or OA vesicle at pH 9.0, which were characterized by the intensity ratio of the Raman peaks at 2850 and 2890 cm-1, R = I2890/I2850. In the Laurdan fluorescence measurements, the obtained spectra were deconvoluted to two peak fractions (A1: λem= 490 nm; A2: λem = 440 nm), and the peak area ratio, A1/(A1 + A2), was defined as the membrane hydrophilicity Øm. The Øm value of the OA/MO dispersion at pH 5.0 was similar to that of the OA O/W emulsion, indicating that the membrane surfaces of these self-assemblies were relatively dehydrated compared to the OA micelle or OA vesicle. To categorize the type of self-assembly dispersion, a Cartesian diagram plot was systematically drawn: R on the x axis and Øm on the y axis, with the cross point at x = 1, y = 0.5. By comparing the membrane properties of the OA-based micelles, O/W emulsions, and dispersed cubic phases, we determined that the OA/MO dispersion at pH 5.0 possessed higher chain packing (R > 1) and a dehydrated membrane surface (Øm < 0.5), which is similar to that of the ordered membranes in gel phases. This characterization method can be useful in evaluating the ordered membrane properties in dispersed self-assemblies in aqueous media.


Assuntos
2-Naftilamina/análogos & derivados , Corantes Fluorescentes/química , Glicerídeos/química , Lauratos/química , Ácido Oleico/química , Análise Espectral Raman , 2-Naftilamina/química , Géis , Concentração de Íons de Hidrogênio , Micelas
11.
J Nanosci Nanotechnol ; 18(3): 1989-1994, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448697

RESUMO

Vesicles prepared by synthetic surfactant, DDAB (dilauryldimethylammonium bromide), were modified with cholesterol and their membrane surface properties of the vesicle were characterized through the analyses of fluorescent probes, such as Laurdan (6-lauroyl-2-dimethylaminonaphthalene) and DPH (1,6-diphenyl-1,3,5-hexatriene). The self-assembly of DDAB with cholesterol showed stable vesicle structure with a mean diameter of 127 nm through the dynamic light scattering analysis. While the DDAB vesicle showed high polarity and high fluidity, the modification of the DDAB vesicle with cholesterol lead to the formation of "heterogeneous phase" on the vesicle membrane. DDAB:cholesterol = 70:30 vesicle showed unique characteristics that represents polar environment but lower fluidity. A novel platform for the chemical process in aqueous media can be expected by using the artificial surfactant vesicles modified with cholesterol.


Assuntos
Colesterol , Compostos de Amônio Quaternário , Vesículas Revestidas , Nanopartículas , Propriedades de Superfície , Tensoativos
12.
Biochim Biophys Acta Biomembr ; 1859(2): 211-217, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27823928

RESUMO

Oleic acid is known to interact with saturated lipid molecules and increase the fluidity of gel phase lipid membranes. In this work, the thermodynamic properties of mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid at the air-water interface were determined using Langmuir isotherms. The isotherm study revealed an attractive interaction between oleic acid and DPPC. The incorporation of oleic acid also monotonically decreased the elastic modulus of the monolayer indicative of higher fluidity with increasing oleic acid content. Using the surface force apparatus, intermembrane force-distance profiles were obtained for substrate supported DPPC membranes containing 30mol% oleic acid at pH5.8 and 7.4. Three different preparation conditions resulted in distinct force profiles. Membranes prepared in pH5.8 subphase had a low number of nanoscopic defects ≤1% and an adhesion magnitude of ~0.6mN/m. A slightly higher defect density of 1-4% was found for membranes prepared in a physiological pH7.4 subphase. The presence of the exposed hydrophobic moieties resulted in a higher adhesion magnitude of 2.9mN/m. Importantly, at pH7.4, some oleic acid deprotonates resulting in a long-range electrostatic repulsion. Even though oleic acid increased the DPPC bilayer fluidity and the number of defects, no membrane restructuring was observed indicating that the system maintained a stable configuration.


Assuntos
Membranas/química , Ácido Oleico/química , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Fluidez de Membrana , Eletricidade Estática , Propriedades de Superfície , Termodinâmica , Água/química
13.
Langmuir ; 33(15): 3831-3838, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28272888

RESUMO

We investigated the effect of organic acids such as mandelic acid (MA) and tartaric acid (TA) on the adsorption behavior of both histidine (His) and propranolol (PPL) onto liposomes. A cationic and heterogeneous liposome prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin (SM)/3ß-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Ch) in a ratio of (4/3/3) showed the highest adsorption efficiency of MA and TA independent of chirality, while neutral liposome DOPC/SM/cholesterol = (4/3/3) showed low efficiency. As expected, electrostatic interactions were dominant in MA or TA adsorption onto DOPC/SM/DC-Ch = (4/3/3) liposomes, suggesting that organic acids had adsorbed onto SM/DC-Ch-enriched domains. The adsorption behaviors of organic acids onto DOPC/SM/DC-Ch = (4/3/3) were governed by Langmuir adsorption isotherms. For adsorption, the membrane polarities slightly decreased (i.e., membrane surface was hydrophilic), but no alterations in membrane fluidity were observed. In the presence of organic acids that had been preincubated with DOPC/SM/DC-Ch = (4/3/3), the adsorption of l- and d-His onto those liposomes was examined. Preferential l-His adsorption was dramatically prevented only in the presence of l-MA, suggesting that the adsorption sites for l-His and l-MA on DOPC/SM/DC-Ch = (4/3/3) liposomes are competitive, while those for l-His and d-MA, l-TA, and d-TA are isolated.


Assuntos
Histidina/química , Adsorção , Colesterol , Lipossomos , Fosfatidilcolinas , Esfingomielinas
14.
Langmuir ; 33(8): 1984-1994, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28161960

RESUMO

Artificial vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in aqueous solution are used successfully as additives for enzymatic oligomerizations or polymerizations of aniline or the aniline dimer p-aminodiphenylamine (PADPA) under slightly acidic conditions (e.g., pH 4.3 with horseradish peroxidase and hydrogen peroxide as oxidants). In these systems, the reactions occur membrane surface-confined. Therefore, (i) the physicochemical properties of the vesicle membrane and (ii) the interaction of aniline or PADPA with the AOT membrane play crucial roles in the progress and final outcome of the reactions. For this reason, the properties of AOT vesicles with and without added aniline or PADPA were investigated by using two fluorescent membrane probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). DPH and Laurdan were used as "sensors" of the membrane fluidity, surface polarity, and membrane phase state. Moreover, the effect of hexanol, alone or in combination with aniline or PADPA, as a possible modifier of the AOT membrane, was also studied with the aim of evaluating whether the membrane fluidity and surface polarity is altered significantly by hexanol, which, in turn, may have an influence on the mentioned types of reactions. The data obtained indicate that the AOT vesicle membrane at room temperature and pH 4.3 (0.1 M NaH2PO4) is more fluid and has a more polar surface than in the case of fluid phospholipid vesicle membranes formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Furthermore, the fluorescence measurements indicate that mixed AOT-hexanol membranes are less fluid than pure AOT membranes and that they have a lower surface polarity than pure AOT membranes. PADPA strongly binds to AOT and to mixed AOT/hexanol membranes and leads to drastic changes in the membrane properties (decrease in fluidity and surface polarity), resulting in Laurdan fluorescence spectra, which are characteristic for intramembrane phase separations (coexistence of ordered and disordered domains). This means that highly fluid AOT membranes transform upon the addition of PADPA into membranes that have ordered domains. Although the relevance of this finding for the enzymatic oligomerization of PADPA is not yet clear, it is also of interest if one likes to use heterogeneous vesicle membranes as additives for carrying out membrane surface-confined reactions that do not necessarily involve PADPA as a reactant.

15.
Biomacromolecules ; 18(4): 1180-1188, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257571

RESUMO

We report the induction and control of chiral recognition in liposomal membranes by the photopolymerization of diacetylenic lipids (DiynePC). The specific properties of polymerized DiynePC liposomes were characterized, and then the chiral separation performance was estimated. As the polymerization proceeds, chiral recognition to ibuprofen was induced, and its efficiency increased due to the formation of rigid nanodomains and boundary edges. Furthermore, the chiral recognition and adsorbed amount could be controlled by the ratio of rigid nanodomains, varying the composition ratio of DiynePC. Finally, the optimum condition and dominant interactions for enantioselective adsorption were clarified. Thus, our findings and results will be helpful to understand the induction of chiral recognition by polymerizable liposomes, and also become a guideline for the construction of liposomal chiral stationary phases.


Assuntos
Lipídeos/química , Nanoestruturas/química , Polimerização , Varredura Diferencial de Calorimetria , Membrana Celular/efeitos dos fármacos , Ibuprofeno/química , Lipossomos/química , Modelos Moleculares
16.
Langmuir ; 32(15): 3630-6, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27022833

RESUMO

Microphase separation behaviors of cationic liposomes have been investigated using a pH-sensitive fluorescent probe with 4-heptadecyl-7-hydroxycoumarin (HHC), 1,6-diphenyl-1,3,5-hexatriene, and 6-lauroyl-2-dimethylaminonaphthalene, and to estimate localized electrostatic potentials. Shifts of the apparent pKa values of HHC were observed in cationic liposomes in proportion to the amount of cationic lipids. Two pKa values were obtained with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/3ß-[N(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-Ch) liposomes, while only one pKa value was generated with either DOPC/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or DOPC/dimethyldioctadecylammonium-bromide (DODAB) liposomes. The physicochemical membrane property analyses, focusing on membrane fluidity and membrane polarity, revealed heterogeneity among DOPC/DC-Ch liposomes. By analyzing the pH titration curves using sigmoidal fitting, the localized electrostatic potentials were estimated. For DOPC/DOTAP = (7/3), the membrane was in the liquid-disordered phase and the density of cationic molecules was 0.41 cation/nm(2). For DOPC/DC-Ch = (7/3), the membrane was heterogeneous and the densities of cationic molecules in liquid-disordered and liquid-ordered phases were 0.25 and 1.24 cation/nm(2), respectively. We thereby conclude that the DC-Ch molecules can form nanodomains when these molecules are concentrated to 59%.


Assuntos
2-Naftilamina/análogos & derivados , Difenilexatrieno/química , Corantes Fluorescentes/química , Lauratos/química , Lipossomos/química , Umbeliferonas/química , 2-Naftilamina/química , Colesterol/análogos & derivados , Colesterol/química , Ácidos Graxos Monoinsaturados/química , Concentração de Íons de Hidrogênio , Fluidez de Membrana , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência
17.
Langmuir ; 32(30): 7606-12, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27404017

RESUMO

Oleic acid (OA) and oleates form self-assembled structures dispersible in aqueous media. Herein, the physicochemical properties of OA/oleate assemblies were characterized using fluorescent probes and Raman spectroscopy, under relatively high dilution (<100 mM of total amphiphile) at 25 °C. Anisotropy analysis using 1,6-diphenyl-1,3,5-hexatriene showed that the microviscosity of the OA/oleate assembly was highest at pH 7.5 (the pH range of 6.9-10.6 was investigated). The fluorescence spectra of 6-lauroyl-2-dimethylaminonaphthalene revealed the dehydrated environments on membrane surfaces at pH < 7.7. The pH-dependent Raman peak intensity ratios, chain torsion (S = I1124/I1096) and chain packing (R = I2850/I2930), showed local maxima, indicating the occurrence of metastable phases, such as dispersed cubic phase (pH = 7.5), vesicle (pH = 8.5), and dispersed cylindrical micelle (pH = 9.7). These results suggest that large-scale OA/oleate assemblies could possess particular membrane properties in a narrow pH region, e.g., at pH 7.5, and 9.7.

18.
Langmuir ; 32(24): 6176-84, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27158923

RESUMO

Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.

19.
Langmuir ; 32(24): 6011-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27232976

RESUMO

In order to investigate the interaction of hydrophilic molecules with liposomal membranes, we employed 1-(4-(trimethylamino)phenyl)-6-phenyl-1,3,5-hexatriene and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(5-dimethylamino-1-naphthalenesulfonyl) as fluorescent probes to monitor the surface regions of the membrane, and the results for various liposomes were plotted in correlation diagrams. According to the formation of a variety of phase states, different tendencies of decreasing surface hydrophobicity were observed in the liposomes that were modified with high concentrations of cholesterol or in the liposomes that were composed of ternary components. These liposomes, with hydrophobic surfaces, also showed preferential adsorption of l-histidine (l-His), and the hydrophobicity of the liposomal membrane at the surface changed during l-His adsorption regardless of the initial liposomal properties. Furthermore, we revealed that accelerated adsorption of l-His and preferential binding was induced in ternary liposomes forming boundaries between two separate phases.


Assuntos
Colesterol/química , Histidina/química , Lipossomos/química , Fosfatidilcolinas/química , Adsorção
20.
Eur Biophys J ; 45(1): 55-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26385703

RESUMO

The hammerhead ribozyme (HHR) is one of smallest catalytic RNAs, composed of a catalytic core and three stems; it undergoes self-cleavage in the presence of divalent magnesium ions (Mg(2+)) or other cations. It is hypothesized that the function and metabolism of RNAs might be regulated via interaction with lipid membranes in the prebiotic world. Using synthetic RNAs that model the core fragment of hammerhead ribozyme-like assembly (HHR-a), we investigated the enhancement of the self-cleavage reaction of HHR-a induced by the liposomes, both in the absence and presence of Mg(2+). The HHR-a activity was enhanced by 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DPPC) = 8/2 liposome with Mg(2+), while other liposomes did not so significant. In the presence of DOPE/DPPC = 8/2 liposome, the HHR-a activity was observed without Mg(2+), revealed by the conformational change of the HHR inhibitor complex induced by the interaction with the liposome. The UV resonance Raman spectroscopy analysis investigated the interaction between lipid molecules and nucleobases, suggesting that the ethanolamine group of DOPE molecules are assumed to act as monovalent cations alternative to Mg(2+), depending on the liposome membrane characteristics.


Assuntos
Lipossomos/química , RNA Catalítico/química , 1,2-Dipalmitoilfosfatidilcolina/química , Hidrólise , Bicamadas Lipídicas/química , Magnésio/química , Fosfatidiletanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA