Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(39): e202400292, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38769938

RESUMO

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

2.
Phys Chem Chem Phys ; 23(20): 11624-11634, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33955433

RESUMO

We investigate the effect of applying an external static electric field on the singlet fission (SF) dynamics of pentacene dimer models using quantum chemical calculations and exciton dynamics simulations. It is found that the excitation energies of anion-cation (AC) and cation-anion (CA) pair exciton states in the SF process are significantly stabilized and destabilized, respectively, by applying an external static electric field (F) in the intermolecular direction. As a result, this change of excitation energies is found to accelerate the SF dynamics in pentacene dimer models. In particular, in the tilted- and parallel-type pentacene dimer models, SF rates at F = 0.001 a.u. are predicted to be about 2.3 and 3.0 times as large as those at F = 0.0 a.u. while keeping the TT yields large. The present result contributes to paving the way for novel physical and chemical controls, that is, an external static electric field application and donor/acceptor substitution on SF molecules, of SF dynamics.

3.
J Phys Chem A ; 125(16): 3257-3267, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33834780

RESUMO

We theoretically show that diaza (N2)-substitution to s-indacene with 4n π-electrons, by which the number of π-electrons in N2-s-indacene amounts to 4n+2, is a new strategy to design efficient singlet fission (SF) molecules. By N2-substitution, the diradical character and the exchange integral are found to be tuned moderately, leading to satisfying the excitation energy level matching condition for SF with a large triplet excitation energy. On the basis of the effective electronic coupling related to the SF rate, we explore the optimal slip-stack dimer packings for fast SF. Their underlying mechanisms are well understood from the odd-electron density, resonance structure, and frontier orbital distribution, as the functions of the N2-substituted positions. Furthermore, aromaticities of N2-s-indacenes are evaluated explicitly on the basis of the magnetically induced current. Although N2-s-indacenes display strengths of aromaticities similar to that of anthracene, a local decrease in aromaticity is found to correlate to the spatial feature of diradical character, i.e., odd-electron density. The present findings not only newly propose N2-s-indacenes as feasible SF molecules but also contribute to comprehending the interplay between aromaticity and diradical electronic structures contributing to SF.

4.
ACS Omega ; 6(4): 3046-3059, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553922

RESUMO

We investigate the relationships between open-shell character and longitudinal static second hyperpolarizabilities γ for one-hole-doped diradicaloids using the strong-correlated ab initio molecular orbital methods and simple one-dimensional (1D) three-site two-electron (3s-2e) models. As examples of one-hole-doped diradicaloids, we examine H3 +, methyl radical trimer cation ((CH3)3 +), silyl radical trimer cation ((SiH3)3 +), and 1,2,3,5-dithiadizolyl trimer cation (DTDA3 +). For H3 +, the static γ exhibits negative values and shows a monotonic increase in amplitude with an increase in the open-shell character defined by a neighbor-site interaction (y S). On the other hand, it is found for (CH3)3 +, (SiH3)3 +, and DTDA3 + that the static γ value exhibits similar behavior to that for H3 + up to an intermediate y S value, while it takes the negative maximum at a large y S value, followed by a decrease in γ amplitude, and subsequently, γ changes to positive values with a drastic increase for larger y S values. For example, in DTDA3 +, the negative/positive γ values, -69 × 105/700 × 105 au at y S = 0.75/0.87, exhibit significant enhancements in amplitude, 2.4/24 times as large as that (-29 × 105 au) at intermediate y S = 0.59 as is often the case in DTDA2. Using the 1D 3s-2e valence-bond configuration interaction model, these sign inversions and drastic increase in the amplitude of γ are found to originate in the differences in Coulomb interactions between valence electrons, between valence and core electrons, and between valence electrons and nuclei. These results contribute to pave the way for the construction of novel control guidelines for the amplitude and sign of γ for one-hole-doped diradicaloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA