Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 175(6): e14098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148190

RESUMO

Natural selection for plant species in heterogeneous environments creates genetic variation for traits such as cold tolerance. While physiological or molecular analyses have been used to evaluate stress tolerance adaptations, combining these approaches may provide deeper insight. Acacia koa (koa) occurs from sea level to 2300 m in Hawai'i, USA. At high elevations, natural koa populations have declined due to deforestation, and freeze tolerance is a limiting factor for tree regeneration. We used physiology and molecular analyses to evaluate cold tolerance of koa populations from low (300-750 m), middle (750-1500 m), and high elevations (1500-2100 m). Half of the seedlings were cold acclimated by exposure to progressively lowered air temperatures for eight weeks (from 25.6/22.2°C to 8/4°C, day/night). Using the whole plant physiology-freezing test and koa C-repeat Binding Factor CBF genes, our results indicated that koa can be cold-acclimated when exposed to low, non-freezing temperatures. Seedlings from high elevations had consistently higher expression of Koa CBF genes associated with cold tolerance, helping to explain variation in cold-hardy phenotypes. Evaluation of the genetic background of 22 koa families across the elevations with low coverage RNA sequencing indicated that high elevation koa had relatively low values of heterozygosity, suggesting that adaptation is more likely to arise in the middle and low elevation sources. This physiology and molecular data for cold tolerance of koa across the elevation gradient of the Hawaiian Islands provides insights into natural selection processes and may help to support guidelines for conservation and seed transfer in forest restoration efforts.


Assuntos
Acacia , Humanos , Congelamento , Acacia/genética , Temperatura Baixa , Temperatura , Aclimatação/genética , Genômica , Regulação da Expressão Gênica de Plantas
2.
Ecology ; 99(11): 2583-2591, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30182375

RESUMO

One of the hypothesized benefits of seed dispersal is to escape density- and distance-responsive, host-specific, natural enemies near maternal plants where conspecific seed and seedling densities are high. Such high conspecific neighbor densities typically result in lower offspring growth and survival (i.e., negative density-dependent effects), yet many dispersal modes result in clumped seed distributions. New World leaf-nosed bats transport fruits to their feeding roosts and deposit seeds, thereby creating high-density seed/seedling patches beneath feeding roosts in heterospecific trees away from maternal trees, which seemingly nullifies a key benefit of seed dispersal. Such dispersal may still be adaptive if negative density-dependent effects are reduced under feeding roosts or if the benefit of being dispersed away from maternal trees outweighs negative effects of conspecific seed/seedling density below roosts. We mapped the entire post-germination population of a bat-dispersed tree species Calophyllum longifolium (Calophyllaceae) in a 50-ha plot on Barro Colorado Island, Panama in each of three successive years. We tested two hypotheses: (1) distance-dependent effects are stronger than density-dependent effects on seedling performance because seedlings far from conspecific adults are more likely to escape natural enemies even when at high densities and (2) negative density-dependent effects will be reduced far from vs. near conspecific adults. Density and distance were naturally decoupled, as expected. However, in contrast to our expectation, we found positive density effects on seedling survival and density-dependent effects did not differ with distance from conspecific adults. Both density and distance had positive effects on seedling survival when considered together, while only year had a significant effect on seedling growth. Thus, both being dispersed under bat feeding roosts and escaping the vicinity of conspecific adults were beneficial for C. longifolium seedling survival, supporting the directed dispersal and escape hypotheses, respectively. Despite resulting in high densities of conspecific seedlings, favorable habitat under bat feeding roosts and lack of negative density-dependent effects appear to provide evolutionary advantages in C. longifolium.


Assuntos
Quirópteros , Dispersão de Sementes , Animais , Colorado , Panamá , Plântula , Sementes , Árvores
3.
Am J Bot ; 104(4): 632-638, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28424205

RESUMO

PREMISE OF THE STUDY: In dioecious species, determining the sex of individual plants from one-time phenological observations is rarely feasible when some individuals capable of reproducing are not flowering or fruiting at the time of observation. Currently, sexing those individuals requires long-term phenological data on individuals and populations, but such data are rarely available or feasible to collect. We tested the hypothesis that differences in soil pollen concentrations beneath the crowns of female and male plants would exist and be sufficient to reliably determine the sex of the individual plant overhead in a dioecious species. We predicted that soil pollen concentrations beneath male plants would be significantly higher than beneath female plants because only males produce pollen and pollen should accumulate in the soil underneath the male plants over repeated flowering events. METHODS: We collected samples from surface soil under both sexes of the insect-pollinated dioecious shrub, Aucuba japonica (Garryaceae). KEY RESULTS: Pollen grains were present in surface soil in both Oe and A horizons, and mean pollen concentration under males was significantly higher than under females. Pollen concentrations beneath males were positively correlated with male plant height, potentially reflecting greater pollen production by larger individuals. CONCLUSIONS: Considering the small plant size and relatively low pollen production of A. japonica, this method may hold promise for sexing other dioecious species in the absence of direct phenological data. Our phenology-free and relatively low-cost method for sexing dioecious plants may be especially useful in tropical forests where many species are dioecious.


Assuntos
Magnoliopsida , Pólen , Solo , Análise para Determinação do Sexo
4.
Front Plant Sci ; 12: 716678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804080

RESUMO

Physical dormancy in seeds can challenge restoration efforts where scarification conditions for optimal germination and seedling vigor are unknown. For species that occur along wide environmental gradients, optimal scarification conditions may also differ by seed source. We examined intraspecific variation in optimal scarification conditions for germination and seedling performance in koa (Acacia koa), which occurs across a wide range of environmental conditions. To evaluate scarification responses, we recorded imbibition percentage, germination percentage, germination time, seedling abnormalities, early mortality, seedling growth, and seedling survivorship. From these, we developed a scarification index (SI) that integrates these measures simultaneously. We hypothesized that seeds from lower elevation sources exposed to higher temperatures would have harder seed coats and would require more intense scarification treatments. To test this hypothesis, we repeatedly exposed seeds to hot water differing in temperature and time until seeds imbibed. Supporting the hypothesis, seeds from lower elevation sources generally required more intense scarification, although we found substantial variation among sources. Koa seeds germinated in about a week following imbibition. Boiling seeds (i.e., maintaining at 100°C) was effective for imbibing seeds but it also substantially reduced germination percentages. Repeated exposure to 90 to 100°C water did not reduce germination percentage but decreased seedling performance and increased early mortality. No seeds remained unimbibed after six attempts of boiling germinated whereas seeds remaining unimbibed after 15 attempts of exposure to 90 to 100°C water showed high germination percentages. Abnormalities in seedling development were rare but increased with treatment intensity. Exposure to 100°C water for 1 min overall generated the best SI values but the best treatment differed by elevation, and the treatment with the best SI was rarely predicted from the highest germination percentages. Seeds that imbibed without any treatment germinated at the same level as manually filed seeds but produced poor seedling quality. Variation in mother tree environments along an elevational gradient can lead to differences in seed coat characteristics, which may explain differing responses to treatments. Scarification treatments affected processes beyond imbibition and germination and using an index like SI may improve efficiency by identifying optimal scarification treatments while reducing seed waste.

5.
Nat Ecol Evol ; 5(2): 174-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199870

RESUMO

Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.


Assuntos
Florestas , Clima Tropical , Especificidade da Espécie , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA