Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 221: 261-272, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815773

RESUMO

Despite of yet unknown mechanism, microvascular deposition of oligomeric Tau (oTau) has been implicated in alteration of the Blood-Brain Barrier (BBB) function in Alzheimer's disease (AD) brains. In this study, we employed an in vitro BBB model using primary mouse cerebral endothelial cells (CECs) to investigate the mechanism underlying the effects of oTau on BBB function. We found that exposing CECs to oTau induced oxidative stress through NADPH oxidase, increased oxidative damage to proteins, decreased proteasome activity, and expressions of tight junction (TJ) proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5. These effects were suppressed by the pretreatment with Fasudil, a RhoA/ROCK signaling inhibitor. Consistent with the biochemical alterations, we found that exposing the basolateral side of CECs to oTau in the BBB model disrupted the integrity of the BBB, as indicated by an increase in FITC-dextran transport across the model, and a decrease in trans endothelial electrical resistance (TEER). oTau also increased the transmigration of peripheral blood mononuclear cells (PBMCs) in the BBB model. These functional alterations in the BBB induced by oTau were also suppressed by Fasudil. Taken together, our findings suggest that targeting the RhoA/ROCK pathway can be a potential therapeutic strategy to maintain BBB function in AD.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Transdução de Sinais , Proteínas tau , Animais , Humanos , Camundongos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética
2.
Mol Neurobiol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561558

RESUMO

Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-ß (oAß) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAß, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAß and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAß or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1ß, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAß and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAß, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.

3.
Front Cell Neurosci ; 18: 1397046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948027

RESUMO

Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA