Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894619

RESUMO

Amino acid binding proteins (AABPs) undergo significant conformational closure in the periplasmic space of Gram-negative bacteria, tightly binding specific amino acid substrates and then initiating transmembrane transport of nutrients. Nevertheless, the possible closure mechanisms after substrate binding, especially long-range signaling, remain unknown. Taking three typical AABPs-glutamine binding protein (GlnBP), histidine binding protein (HisJ) and lysine/arginine/ornithine binding protein (LAOBP) in Escherichia coli (E. coli)-as research subjects, a series of theoretical studies including sequence alignment, Gaussian network model (GNM), anisotropic network model (ANM), conventional molecular dynamics (cMD) and neural relational inference molecular dynamics (NRI-MD) simulations were carried out. Sequence alignment showed that GlnBP, HisJ and LAOBP have high structural similarity. According to the results of the GNM and ANM, AABPs' Index Finger and Thumb domains exhibit closed motion tendencies that contribute to substrate capture and stable binding. Based on cMD trajectories, the Index Finger domain, especially the I-Loop region, exhibits high molecular flexibility, with residues 11 and 117 both being potentially key residues for receptor-ligand recognition and initiation of receptor allostery. Finally, the signaling pathway of AABPs' conformational closure was revealed by NRI-MD training and trajectory reconstruction. This work not only provides a complete picture of AABPs' recognition mechanism and possible conformational closure, but also aids subsequent structure-based design of small-molecule oncology drugs.


Assuntos
Aminoácidos , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/química , Ligação Proteica , Conformação Proteica , Simulação de Dinâmica Molecular , Lisina , Ligantes
2.
Artigo em Inglês | MEDLINE | ID: mdl-38919078

RESUMO

Platinum (II) drugs, including cisplatin, carboplatin, and oxaliplatin, have achieved significant clinical success in cancer treatment. However, their clinical application has been greatly hindered by various adverse factors such as non-specific activation and drug resistance. Compared with Pt(II) drugs, the axial ligands within Pt(IV) compounds can improve the pharmacokinetic properties, selectivity, and biological activity, implementing alternative cytotoxic mechanisms beyond DNA cross-linking and partially overcoming drug resistance. The controlled conversion of Pt(IV) prodrugs into Pt(II) agents at the tumor site has been extensively explored internationally. In this review, Pt(IV) prodrug modification strategies are first summarized, next the development of the predominant external and internal photosensitizers is listed. Finally, three representative photoreduction mechanisms and strategies for developing corresponding Pt(IV) prodrugs are discussed. This work provides constructive instruction for the subsequent molecular design of Pt(IV) prodrugs.

.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA