Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700532

RESUMO

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Assuntos
Glicólise , Homeostase , Camundongos Knockout , Osteoblastos , Sirtuína 1 , Animais , Camundongos , Acetilação , Osso e Ossos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Sirtuína 1/metabolismo , Sirtuína 1/genética
2.
Anal Chem ; 96(4): 1733-1741, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227423

RESUMO

Exosomal miRNAs are considered promising biomarkers for cancer diagnosis, but their accuracy is severely compromised by the low content of miRNAs and the large amount of exosomal miRNAs released from normal cells. Here, we presented a dual-specific miRNA's logical recognition triggered by an entropy-driven catalysis (EDC)-enhanced system in exosomes for accurate detection of liver cancer-cell-derived exosomal miR-21 and miR-122. Taking advantage of the accurate analytical performance of the logic device, the excellent membrane penetration of gold nanoparticles, and the outstanding amplification ability of the EDC reaction, this method exhibits high sensitivity and selectivity for the detection of tumor-derived exosomal miRNAs in situ. Moreover, due to its excellent performance, this logic device can effectively distinguish liver cancer patients from healthy donors by determining the amount of cancer-cell-derived exosomal miRNAs. Overall, this strategy has great potential for analyzing various types of exosomes and provides a viable tool to improve the accuracy of cancer diagnosis.


Assuntos
Exossomos , Neoplasias Hepáticas , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/genética , Ouro , Entropia , Exossomos/genética , DNA , Neoplasias Hepáticas/diagnóstico , Lógica
3.
Toxicol Appl Pharmacol ; 461: 116401, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706924

RESUMO

Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 µM and 12.3 µM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 µM, 5.8 µM and 2.2 µM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 µM, 22.28 µM, 37.86 µM, 7.27 µM, 0.68 µM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.


Assuntos
Clorofenóis , Inibidores das Enzimas do Citocromo P-450 , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9/farmacologia , Simulação de Acoplamento Molecular , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Clorofenóis/toxicidade
4.
Transgenic Res ; 32(4): 305-319, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247123

RESUMO

JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.


Assuntos
Polyomavirus , Neoplasias Gástricas , Camundongos , Humanos , Animais , Antígenos Virais de Tumores/genética , Camundongos Transgênicos , Células Epiteliais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
5.
Biomed Chromatogr ; 37(6): e5625, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919355

RESUMO

Liver cirrhosis is currently the twelfth leading cause of death globally and the sixth leading cause of death in China. Its treatment is expensive. Changes in the composition of the serum bile acid pool are sensitive indicators of the severity of liver cirrhosis. In this study, a novel LC-tandem mass spectrometry (LC-MS/MS) method was developed and used to simultaneously determine 15 bile acids in human serum in patients with decompensated cirrhosis. Sample preparation involved spiking with isotope internal standards followed by protein precipitation. The analytical run time was 5 min. The LC-MS/MS method was fully validated according to Clinical and Laboratory Standards Institute (CLSI) C62A and the consensus of method development and validation of liquid chromatography-tandem mass spectrometry in clinical laboratories. The method achieved an acceptable coefficient of variation for precision (0.83%-14.80%) and accuracy (89.39%-107.62%). Finally, as proof of applicability, the method was applied to patients with decompensated cirrhosis in routine clinical sample analysis. The degree of variation of different bile acids was clearly shown. These results indicated that abnormal metabolic pathways might play important roles in decompensated cirrhosis.


Assuntos
Ácidos e Sais Biliares , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Padrões de Referência , Reprodutibilidade dos Testes
6.
Anal Chem ; 94(49): 17232-17239, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36441908

RESUMO

Taking advantage of the remarkable processivity and membrane penetrability, the gold nanoparticle (AuNP)-based three-dimensional (3D) DNA walking nanomachine has induced tremendous promise in molecular diagnostics and cancer therapy, whereas the executive ability of this nanomachine was eventually limited because of the disordered assembly between the walker and the track. Therefore, we developed a well-directed 3D DNA walking nanomachine by employing a DNA dendrimer as the track for intracellular imaging with high directionality and controllability. The nanomachine was constructed on a DNA dendrimer decorated with a substrate strand serving as the DNA track and a DNAzyme restrained by a locking strand as the walker. In this system, the distribution of the substrate strand and DNAzyme on the DNA dendrimer could be precisely regulated to achieve expected goals because of the specificity and predictability of the Watson-Crick base pairing, paving an explicit route for each walker to move along the track. Moreover, such a DNA dendrimer-based nanomachine owned prominent stability and anti-interference ability. By choosing microRNA-21 as a model analyte, the nanomachine was applied for the imaging of microRNA-21 in different cell lines and the monitoring of the dynamic microRNA-21 expression level in cancer cells. Therefore, we believe that this directed DNA walking nanomachine will have a variety of applications in molecular diagnostics and biological function modulation.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , Ouro/química , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA/química , DNA Catalítico/química , Limite de Detecção
7.
J Biochem Mol Toxicol ; 35(2): e22644, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33049095

RESUMO

Pulmonary vascular endothelial cell (PVEC) injury following acute lung injury or acute respiratory distress syndrome seriously affects disease development. Recently, accumulating evidence has suggested that long noncoding RNA (lncRNA) exerts significant effects in vascular endothelial cell injury. However, PRNCR1, a novel lncRNA, remains scarcely understood in terms of its functions in PVEC injury. Both in vivo and in vitro models of PVEC injury were constructed by lipopolysaccharide (LPS) administration. The relative expressions of PRNCR1, miR-330-5p, and TLR4 were detected by quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry. Besides, gain and loss assays of PRNCR1/miR-330-5p were conducted to verify their effects on LPS-induced PVEC injury. Cell Counting Kit-8 assay used to measure cell viability and flow cytometry was used to detect apoptosis. Besides, the protein levels of caspase 3, nuclear factor-κB (NF-κB), and inflammatory cytokines (including tumor necrosis factor-α, interleukin-1ß [IL-1ß], and IL-6) were evaluated via Western blot and enzyme-linked immunosorbent assay. Moreover, a dual-luciferase activity experiment and RNA immunoprecipitation were applied to confirm the targeting relationship between PRNCR1 and miR-330-5p, miR-330-5p, and TLR4. PRNCR1 and TLR4 levels were significantly upregulated in LPS-treated PVEC, both in vivo and in vitro, while miR-330-5p were downregulated. Inhibiting PRNCR1 or overexpressing miR-330-5p markedly attenuated LPS-induced PVEC injury, expressions of TLR4, NF-κB, and inflammatory cytokines. Mechanistically, PRNCR1 functioned as a competitive endogenous RNA by sponging miR-330-5p and then promoting TLR4 expression. PRNCR1 was upregulated in LPS-induced PVEC and aggravated its injury via modulating the miR-330-5p/TLR4 axis.


Assuntos
Regulação para Baixo , Endotélio Vascular/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
8.
Semin Cell Dev Biol ; 64: 107-115, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27578007

RESUMO

Precision medicine is becoming considerably critical in colorectal cancer therapy. Particularly for targeted therapies, the response to anti-EGFR therapy largely varies among individual patients. The mechanisms of anti-EGFR-based regimens resistance have been revealed, for instance, mutations in KRAS, BRAF, and PIK3CA. It is well known that colorectal cancer is a heterogeneous disease, massive evidences indicate that there are intertumour and intratumour heterogeneities in colorectal cancer. Recently, the integrative factor of the genetic, epigenetic and microenvironmental alterations that attribute to CRC heterogeneity is associated with the response to targeted therapies. We review here the possible mechanisms of heterogeneity that influence the anti-EGFR therapy, and mainly focus on the enhancive biomarkers detection to predict the therapy efficiency and select appropriate patients who are most likely to benefit from special targeted therapies, and take advantage of simultaneously blocked the multiple molecules involved in activation of independent of ligands induced EGFR signaling pathway to overcome the resistance to anti-EGFR therapies.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos , Heterogeneidade Genética , Terapia de Alvo Molecular , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Modelos Biológicos
9.
J Biol Chem ; 293(22): 8614-8625, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653943

RESUMO

The NAD+-dependent deacetylase sirtuin-1 (SIRT1) has emerged as an important regulator of chondrogenesis and cartilage homeostasis, processes that are important for physiological skeletal growth and that are dysregulated in osteoarthritis. However, the functional role and underlying mechanism by which SIRT1 regulates chondrogenesis remain unclear. Using cultured rat metatarsal bones and chondrocytes isolated from rat metatarsal rudiments, here we studied the effects of the SIRT1 inhibitor EX527 or of SIRT1 siRNA on chondrocyte proliferation, hypertrophy, and apoptosis. We show that EX527 or SIRT1 siRNA inhibits chondrocyte proliferation and hypertrophy and induces apoptosis. We also observed that SIRT1 inhibition mainly induces the PERK-eIF-2α-CHOP axis of the endoplasmic reticulum (ER) stress response in growth-plate chondrocytes. Of note, EX527- or SIRT1 siRNA-mediated inhibition of metatarsal growth and growth-plate chondrogenesis were partly neutralized by phenylbutyric acid, a chemical chaperone that attenuates ER stress. Moreover, EX527-mediated impairment of chondrocyte function (i.e. of chondrocyte proliferation, hypertrophy, and apoptosis) was partly reversed in CHOP-/- cells. We also present evidence that SIRT1 physically interacts with and deacetylates PERK. Collectively, our findings indicate that SIRT1 deacetylates PERK and attenuates the PERK-eIF-2α-CHOP axis of the unfolded protein response pathway and thereby promotes growth-plate chondrogenesis and longitudinal bone growth.


Assuntos
Condrócitos/citologia , Condrogênese , Fator de Iniciação 2 em Eucariotos/metabolismo , Sirtuína 1/metabolismo , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo , Acetilação , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Lâmina de Crescimento/citologia , Lâmina de Crescimento/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Fator de Transcrição CHOP/genética , eIF-2 Quinase/genética
10.
J Cell Physiol ; 234(2): 1937-1946, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144070

RESUMO

The development and progression of hepatocellular carcinoma (HCC) have been associated with abnormal cellular metabolism. Gene Expression Profiling Interactive Analysis RNA sequencing data revealed caveolin-1 (CAV-1) and hexokinase 2 (HK2) messenger RNA (mRNA) were significantly upregulated in human HCC compared with normal tissues, and high HK2 expression was associated with significantly poorer overall survival in HCC ( p < 0.05). CAV-1 and HK2 mRNA and protein expression were upregulated and positively correlated in 42 fresh human HCC tissues compared with tumor-adjacent normal tissues. Overexpression of CAV-1 or HK2 in SMMC-7721 and HepG2 HCC cells enhanced glucose and lactate metabolism and increased cell migration and invasion in transwell assays; knocking down CAV-1 or HK2 had the opposite effects. Overexpression of CAV-1 increased HK2 expression; overexpression of HK2 did not affect CAV-1 expression. Knocking down HK2 partially reversed the ability of CAV-1 to promote cellular metabolism, invasion, and migration in HCC, indicating CAV-1 enhances glycolysis, invasion, and metastasis in HCC cells via HK2-dependent mechanism. Further studies of the function and relationship between CAV-1 or HK2 expression are warranted to explore the potential of these proteins as metabolic targets for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Caveolina 1/metabolismo , Movimento Celular , Metabolismo Energético , Hexoquinase/metabolismo , Neoplasias Hepáticas/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caveolina 1/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Hexoquinase/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Transdução de Sinais
11.
Biochem Cell Biol ; 96(5): 572-579, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29390193

RESUMO

Aquaporin-5 (AQP5), a water channel protein, has been reported to possess oncogenic potential in multiple types of malignancies, including colorectal cancer (CRC). However, its effect on the chemosensitivity of CRC cells remains elusive. Hence, this study investigated the effect of AQP5 silencing in CRC cells on 5-fluorouracil (5-FU) sensitivity and attempted to elucidate the underlying mechanisms. A short hairpin RNA construct targeting AQP5 was transfected into HCT116 or HT29 cells to generate stable AQP5-silenced cell lines. The effects of AQP5 knockdown on cell viability, apoptosis, tumor growth, and 5-FU chemoresistance were evaluated. Relative protein levels of Wnt-ß-catenin pathway effectors were also measured. The results showed that silencing of AQP5 increased the chemosensitivity of CRC cells to 5-FU, facilitated 5-FU-mediated apoptosis, suppressed tumor growth, and reduced 5-FU chemoresistance in vivo. Furthermore, the effect of AQP5 on 5-FU chemosensitivity was mediated by the Wnt-ß-catenin pathway. Silencing of AQP5 inhibited Wnt-ß-catenin signaling, whereas overexpression of the degradation-resistant mutant of ß-catenin (S33Y) reversed apoptosis induced by AQP5 silencing. Taken together, these results suggest that AQP5 silencing enhances the sensitivity of CRC cells to 5-FU, and the underlying mechanism is related to inhibition of the Wnt-ß-catenin pathway. AQP5 could be a useful therapeutic target for CRC treatment.


Assuntos
Aquaporina 5/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Proteínas de Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Aquaporina 5/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Proteínas de Neoplasias/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
12.
Cell Biol Toxicol ; 34(2): 87-91, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29511917

RESUMO

Mitochondrial malfunction is related to aging and to the onset of many diseases, such as obesity/diabetes, cancer, and cardiovascular and neurodegenerative diseases. The molecular principles of biological and toxicological processes the mitochondria can regulate should be disease-specific, cell type-specific, and drug targetable. Mitochondrial biology and toxicology is evolving and undergoing a revolution through fast-developing biotechnologies garnering increasing attention due to the importance of targeted therapies. Mitochondrial energy production and metabolism are conducted via post-mitochondrial signaling, and are controlled by extra-mitochondrial pathways. Mitochondrial biology and toxicology has a history spanning over 30 years and is one of the main scientific focuses at Cell Biology and Toxicology. It is our aim to pioneer innovations of mitochondrial biology and toxicology to improve the understanding, highlight the latest development, and find mitochondria-based targets for therapies. It is expected to know how drugs can initiate mitochondrial dysfunction, the role of nuclear messages in regulating mitochondrial DNA (MtDNA), and how mitochondria communicate between or with other cells. Further studies are crucial to discover how mitochondria control the process of immune response, autophagy/mitophagy, genome activation, and cell interaction. It is also needed to innovate how the transcription is started and terminated within mitochondria, the cytosolic proteins and other organelles interact with mitochondria, and MtDNA regulates the function of mitochondrial respiratory megacomplexes.


Assuntos
Autofagia/efeitos dos fármacos , Biologia Celular , DNA Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Toxicologia/métodos , Animais , Autofagia/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo
13.
Xenobiotica ; 48(5): 452-458, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28548030

RESUMO

1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 µM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver-Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 µM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro-in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.


Assuntos
Inibidores Enzimáticos/farmacologia , Everolimo/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Glucuronosiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Isoformas de Proteínas/metabolismo
14.
Xenobiotica ; 48(3): 250-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28285550

RESUMO

1. UDP-glucuronosyltransferases (UGTs) are important drug-metabolizing enzymes (DMEs) catalyzing the glucuronidation elimination of various xenobiotics and endogenous substances. Endogenous substances are important regulators for the activity of various UGT isoforms. Triiodothyronine (T3) and thyroxine (T4) are important thyroid hormones essential for normal cellular differentiation and growth. The present study aims to elucidate the inhibition behavior of T3 and T4 on the activity of UGT isoforms. 2. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to screen the inhibition potential of T3 and T4 on the activity of various UGT isoforms. Initial screening results showed that T4 exerted stronger inhibition potential than T3 on the activity of various UGT isoforms at 100 µM. Inhibition kinetics was determined for the inhibition of T4 on the representative UGT isoforms, including UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7. The results showed that T4 competitively inhibited the activity of UGT1A1, -1A3, -1A7, 1A10 and -2B7, and noncompetitively inhibited the activity of UGT1A8. The inhibition kinetic parameters were calculated to be 1.5, 2.4, 11, 9.6, 4.8 and 3.0 µM for UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7, respectively. In silico docking method was employed to demonstrate why T4 exerted stronger inhibition than T3 towards UGT1A1. Stronger hydrogen bonds and hydrophobic interaction between T4 and activity cavity of UGT1A1 than T3 contributed to stronger inhibition of T4 towards UGT1A1. 3. In conclusion, more clinical monitoring should be given for the patients with the elevation of T4 level due to stronger inhibition of UGT isoforms-catalyzed metabolism of drugs or endogenous substances by T4.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Humanos , Ligação de Hidrogênio , Himecromona/metabolismo , Simulação de Acoplamento Molecular , Tiroxina/química , Tri-Iodotironina/química
15.
Blood Purif ; 46(4): 326-331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30173223

RESUMO

Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit. As the most common treatment of septic AKI, it is believed that continuous renal replacement therapy (CRRT) can not only maintain the water balance and excrete the metabolic products but also regulate the inflammation and promote kidney recovery. CRRT can remove the inflammatory cytokines to regulate the metabolic adaption in kidney and restore the kidney recovery to protect the kidney in septic AKI. Second, CRRT can provide extra energy supply in septic AKI to improve the kidney energy balance in septic AKI. Third, the anticoagulant used in CRRT also regulates the inflammation in septic AKI. CRRT is not only a treatment to deal with the water balance and metabolic products, but also a method to regulate the inflammation in septic AKI.


Assuntos
Metabolismo Energético , Rim , Recuperação de Função Fisiológica , Terapia de Substituição Renal , Sepse , Equilíbrio Hidroeletrolítico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Humanos , Rim/metabolismo , Rim/fisiopatologia , Sepse/metabolismo , Sepse/fisiopatologia , Sepse/terapia
16.
Biochem Biophys Res Commun ; 484(3): 529-535, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153729

RESUMO

BACKGROUND: 4-phenyl butyric acid (4-PBA) has been considered as a key regulator of insulin resistance in obesity. However the mechanism of 4-PBA involved in insulin resistance remains elusive. METHODS: We evaluated the effect of 4-PBA on abnormal autophagy and endoplasmic reticulum (ER) stress in obese mice. 4-PBA was administered in obese mice and adipocyte models, and metabolic parameters, autophagy markers, ER stress indicators, Akt/mTOR signaling and insulin signaling molecular were assessed. RESULTS: 4-PBA treatment not only reversed autophagic dysfunction and ER stress, but also improved impaired insulin signaling in tunicamycin-induced adipocytes, and 4-PBA also inhibited activated ER stress and elevated insulin sensitivity in adipocytes with Atg7 siRNA. Additionally, administration of 4-PBA improves glucose tolerance and insulin sensitivity in obese mice via regulating abnormal autophagy and ER stress in adipose tissue. The protective effects of 4-PBA were nullified by suppression of Akt and mTOR in adipocytes, suggesting that 4-PBA inhibits autophagy and restores insulin sensitivity via Akt/mTOR signaling partially. CONCLUSIONS: 4-PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling partly, which could be regarded as novel opportunities for treatment of insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Autofagia/efeitos dos fármacos , Butilaminas/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
Lupus ; 26(3): 289-293, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27522093

RESUMO

Objective Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease. However, the exact mechanism underlying SLE-related osteopenia and osteoporosis in patients newly diagnosed with SLE remains unknown. Methods 60 male subjects with SLE aged 20-30 years were enrolled. Serum osteocalcin was examined as a marker of bone formation and type I collagen degradation products (ß-crosslaps) as markers of bone resorption. Lumbar spine (L1-L4) and total hip bone mineral density (BMD) were determined by dual energy X-ray absorption (DXA). Results Among the 60 subjects with SLE at the time of diagnosis, the cohort showed a significant reduction of osteocalcin (12.62 ± 2.16 ng/mL), and serum ß-crosslaps level (992.6 ± 162.6 pg/mL) was markedly elevated. Univariate correlation analyses revealed negative correlations between osteocalcin and SLEDAI, dsDNA antibody and ß-crosslaps. A positive correlation was also observed between osteocalcin and C3, C4, 25-OH vitamin D, BMD L1-L4 and BMD total hip (see Table 3). Osteocalcin and ß-crosslaps were strongly associated with SLE disease activity by multiple stepwise logistic regression analysis. Conclusion Osteocalcin was negatively associated with SLE disease activity, and ß-crosslaps was positively associated with SLE disease activity, suggesting SLE disease activity itself directly contributed to the development of SLE-associated osteopenia and osteoporosis.


Assuntos
Densidade Óssea , Lúpus Eritematoso Sistêmico/complicações , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , China , Colágeno/sangue , Humanos , Modelos Logísticos , Vértebras Lombares/diagnóstico por imagem , Masculino , Osteocalcina/sangue , Fragmentos de Peptídeos/sangue , Vitamina D/sangue , Adulto Jovem
18.
Xenobiotica ; 47(5): 376-381, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27359323

RESUMO

1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective. 2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100 µM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6 µM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A. 3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/metabolismo , Vitamina A/farmacologia , Inibidores Enzimáticos/metabolismo , Himecromona , Cinética , Vitamina A/metabolismo
19.
Arch Toxicol ; 91(5): 2235-2244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27853831

RESUMO

Alpha-naphthyl isothiocyanate (ANIT)-induced liver damage is regarded as a useful model to study drug-induced cholestatic hepatitis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based metabolomics revealed clues to the mechanism of ANIT-induced liver injury, which facilitates the elucidation of drug-induced liver toxicity. 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:0) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:1) were significantly increased in serum from ANIT-treated mice, and this increase resulted from altered expression of genes encoding the lipid metabolism enzymes Chka and Scd1. ANIT also increased NF-κB/IL-6/STAT3 signaling, and in vitro luciferase reporter gene assays revealed that LPC 18:0 and LPC 18:1 can activate NF-κB in a concentration-dependent manner. Activation of PPARα through feeding mice a Wy-14,643-containing diet (0.1%) reduced ANIT-induced liver injury, as indicated by lowered ALT and AST levels, and liver histology. In conclusion, the present study demonstrated a role for the lipid-regulated NF-κB/IL-6/STAT3 axis in ANIT-induced hepatotoxicity, and that PPARα may be a potential therapeutic target for the prevention of drug-induced cholestatic liver injury.


Assuntos
1-Naftilisotiocianato/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , PPAR alfa/genética , PPAR alfa/metabolismo , Pirimidinas/farmacologia
20.
Lipids Health Dis ; 16(1): 25, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143512

RESUMO

BACKGROUND: Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. METHODS: In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. RESULTS: Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. CONCLUSION: Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Óxido Nítrico/agonistas , Espécies Reativas de Oxigênio/agonistas , Células 3T3-L1 , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Glucose/metabolismo , Granulinas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Injeções Intraperitoneais , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/farmacologia , Progranulinas , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA