RESUMO
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
Assuntos
Proteínas Nucleares , Síndromes Orofaciodigitais , Humanos , Cílios/genética , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/metabolismo , Proteínas Nucleares/genéticaRESUMO
Intracerebral hemorrhage (ICH) could trigger inflammatory responses. However, the specific role of inflammatory proteins in the pathological mechanism, complications, and prognosis of ICH remains unclear. In this study, we investigated the expression of 92 plasma inflammation-related proteins in patients with ICH (n = 55) and healthy controls (n = 20) using an Olink inflammation panel and discussed the relation to the severity of stroke, clinical complications, 30-day mortality, and 90-day outcomes. Our result showed that six proteins were upregulated in ICH patients compared with healthy controls, while seventy-four proteins were downregulated. In patients with ICH, seven proteins were increased in the severe stroke group compared with the moderate stroke group. In terms of complications, two proteins were downregulated in patients with pneumonia, while nine proteins were upregulated in patients with sepsis. Compared with the survival group, three proteins were upregulated, and one protein was downregulated in the death group. Compared with the good outcome group, eight proteins were upregulated, and four proteins were downregulated in the poor outcome group. In summary, an in-depth exploration of the differential inflammatory factors in the early stages of ICH could deepen our understanding of the pathogenesis of ICH, predict patient prognosis, and explore new treatment strategies.
Assuntos
Biomarcadores , Hemorragia Cerebral , Inflamação , Humanos , Hemorragia Cerebral/sangue , Hemorragia Cerebral/mortalidade , Masculino , Feminino , Inflamação/sangue , Biomarcadores/sangue , Pessoa de Meia-Idade , Prognóstico , Idoso , Estudos de Casos e Controles , Sepse/sangue , Sepse/mortalidade , Sepse/complicações , Pneumonia/sangue , Pneumonia/mortalidade , Pneumonia/complicações , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/mortalidade , Regulação para Cima , Regulação para BaixoRESUMO
Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.
Assuntos
Carbono , Núcleo Celular , Pontos Quânticos , Humanos , Carbono/química , Núcleo Celular/química , Núcleo Celular/metabolismo , Pontos Quânticos/química , Animais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/análise , Corantes Fluorescentes/química , Coloração e Rotulagem , Caenorhabditis elegans/química , Cebolas/química , Cebolas/citologiaRESUMO
Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.
Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , SacaroseRESUMO
Scanning near-field optical microscope (SNOM) with nanoscale spatial resolution has been a powerful tool in studying the plasmonic properties of nano materials/structures. However, the quantification of the SNOM measurement remains a major challenge in the field due to the lack of reliable methodologies. We employed the point-dipole model to describe the tip-surface interaction upon laser illumination and theoretically derived the quantitative relationship between the measured results and the actual near-field electric field strength. Thus, we can experimentally reconstruct the near-field electric field through this theoretically calculated relationship. We also developed an experimental technique together with FEM simulation to get the above relationship experimentally and reconstruct the near-field electric field from the measurement by SNOM.
RESUMO
Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.
RESUMO
Generally, the potential reactive "olefin pairs" in the molecular crystals satisfying Schmidt's criteria could undergo topological [2+2] cycloaddition. In this study, another factor that affects the photodimerization reactivity of chalcone analogues was found. The cyclic chalcone analogues of (E)-2-(2,4-dichlorobenzylidene)-2,3-dihydro-1H-inden-1-one (BIO), (E)-2-(naphthalen-2-ylmethylene)-2,3-dihydro-1H-inden-1-one (NIO), (Z)-2-(2,4-dichlorobenzylidene)benzofuran-3(2H)-one (BFO), and (Z)-2-(2,4-dichlorobenzylidene)benzo[b]thiophen-3(2H)-one (BTO) have been synthesized. While the geometrical parameters for the molecular packing of the above four compounds did not exceed Schmidt's criteria, [2+2] cycloaddition did not occur in the crystals of BIO and BTO. The single crystal structures and Hirshfeld surface analyses revealed that interactions of C=Oâ â â H (CH2 ) existed between adjacent molecules in the crystal of BIO. Therefore, the carbonyl and methylene groups linked with one carbon atom in carbon-carbon double bond were tightly confined in the lattice, acting as a tweezer to inhibit free movement of the double bond and suppressing [2+2] cycloaddition. In the crystal of BTO, similar interactions of Clâ â â S and C=Oâ â â H (C6 H4 ) prevented free movement of the double bond. In contrast, the intermolecular interaction of C=Oâ â â H only exists around the carbonyl group in the crystals of BFO and NIO, leaving the C=C double bonds to move freely and allowing the occurrence of [2+2] cycloaddition. Driven by photodimerization, the needle-like crystals of BFO and NIO displayed evident photo-induced bending behavior. This work demonstrates that the intermolecular interactions around carbon-carbon double bond affect the [2+2] cycloaddition reactivity except for Schmidt's criteria. These findings provide valuable insights into the design of photomechanical molecular crystalline materials.
RESUMO
Three groups of chalcone derivatives and their analogues involving halogen atoms (X=F, Cl, Br) have been synthesized. Firstly, the nearly planar acyclic chalcone derivatives were inclined to undergo photo-induced stereospecific [2+2] cycloaddition, which triggered the crystals to exhibit macroscopic motions of bending or cracking. In particular, the single-crystal-to-single-crystal transformation happened upon UV irradiation of the crystals, which was helpful for the understanding photomechanical effects. Cyclic 3,4-dihydronaphthalene-based chalcone analogues possess a more twisted conformation, and they tend to undergo trans-cis isomerization. No photomechanical effect was observed for the crystals of the cyclic chalcone analogues due to the lower isomerization rate. The twist degree of chroman-based molecules was in between of the first two, [2+2] cycloaddition and trans-cis isomerization simultaneously took place in crystals. Photo-induced bending and twisting were observed for the crystals of chroman-based chalcone analogues. Therefore, the differences in molecular dihedral angles in α,ß-unsaturated ketones were responsible for their photochemical characters and in turn to tune the photomechanical effects. In this work, a bridge between the molecular structures and solid-state photochemical reactions triggered photomechanical crystals is built.
RESUMO
A Dyakonov surface wave offers a promising way of guiding light in two dimensions with almost no loss but also additional freedom of modulation through the anisotropy at the interface. Here we experimentally demonstrated a spin-dependent Dyakonov surface wave mode propagating in a hyperbolic metamaterial film at a visible frequency. Due to the strong anisotropy of the hyperbolic metamaterial, a Dyakonov type mode shows a large allowed angle band and transverse spin with its direction determined by the orientations of the hyperbolic anisotropy and surface normal, based on which we experimentally observed the photonic spin Hall effect of the surface wave mode. This work enables a new generation of two-dimensional photonic circuits with spin-dependent excitation/detection and modulation devices at the subwavelength level.
RESUMO
Materials with crystalline structures of circular symmetry are rare in nature; however, they are highly desired in optical applications with structured lights, whose characteristics are of cylindrical symmetry. In this work, using a naturally existing circular anisotropy from a spherulite formed by molecular self-assembly, we obtain a cylindrical vector optical vortex beam generation transformed from the spin angular momentum in the wide visible range. The proposed strategy provides promising and broad opportunities for the applications of spherulites in the generation of structured lights and modulations of both the polarization and the angular momentum.
RESUMO
Automated essay scoring aims to evaluate the quality of an essay automatically. It is one of the main educational application in the field of natural language processing. Recently, Pre-training techniques have been used to improve performance on downstream tasks, and many studies have attempted to use pre-training and then fine-tuning mechanisms in an essay scoring system. However, obtaining better features such as prompts by the pre-trained encoder is critical but not fully studied. In this paper, we create a prompt feature fusion method that is better suited for fine-tuning. Besides, we use multi-task learning by designing two auxiliary tasks, prompt prediction and prompt matching, to obtain better features. The experimental results show that both auxiliary tasks can improve model performance, and the combination of the two auxiliary tasks with the NEZHA pre-trained encoder produces the best results, with Quadratic Weighted Kappa improving 2.5% and Pearson's Correlation Coefficient improving 2% on average across all results on the HSK dataset.
RESUMO
In this Letter, we present a mechanism for effectively broadening the bandwidth of second-harmonic generation (SHG) with the metamaterial-based artificial optical nonlinearity. As the nonlinear response of the artificial nonlinearity arising from the magnetoelectric coupling constructed by the meta-molecule (MM) structure, the broadband second-order nonlinearity can be built by simply combining the MMs with different geometrical sizes together. The physical model and the numerical simulation fully support the artificial generation and modulation of the broadband second harmonics. Our work suggests a new route for realizing the on-chip custom-designed nonlinear optical devices with broadband operation.
RESUMO
The polymorphs of 2ClChMe-4 in Form I (ribbon-like crystal) and Form II (block-like crystal) were prepared, and they exhibited curling/flipping and expansion upon heating on account of single-crystal-to-single-crystal transformations. The irreversible phase transformations occurred separately at 53.2 °C and 57.8 °C for the crystals in Form I and Form II, during which the molecular conformation of 2ClChMe-4 changed and the molecules slipped along the (100) plane. Movement at the molecular level resulted in changes of cell parameters, which in turn led to macroscopic motions of the crystals upon heating. Additionally, the ribbon-like crystals of 2ClChMe-4 showed photo-induced bending driven by [2+2] cycloaddition. Accordingly, an actuator showing reversible bending behavior was fabricated triggered by light and heat successively. Like biomimetic self-actuators, such multi-stimuli mechanical responsive molecular crystals might have potential applications in soft robots, artificial muscles and microfluidic systems.
Assuntos
Chalcona , Chalconas , Biomimética , Reação de Cicloadição , MicrofluídicaRESUMO
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cadeias Leves de Clatrina/metabolismo , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cadeias Leves de Clatrina/genética , Hipocótilo/metabolismo , Epiderme Vegetal/metabolismoRESUMO
Precise regulation of hypocotyl cell elongation is essential for plant growth and survival. Light suppresses hypocotyl elongation by degrading transcription factor phytochrome-interacting factor 3 (PIF3), whereas the phytohormone ethylene promotes hypocotyl elongation by activating PIF3. However, the underlying mechanisms regarding how these two pathways coordinate downstream effectors to mediate hypocotyl elongation are largely unclear. In this study, we identified the novel Microtubule-Destabilizing Protein 60 (MDP60), which plays a positive role in hypocotyl cell elongation in Arabidopsis (Arabidopsis thaliana); this effect is mediated through PIF3. Ethylene signaling up-regulates MDP60 expression via PIF3 binding to the MDP60 promoter. MDP60 loss-of-function mutants exhibit much shorter hypocotyls, whereas MDP60 overexpression significantly promotes hypocotyl cell elongation when grown in light compared to the control. MDP60 protein binds to microtubules in vitro and in vivo. The organization of cortical microtubules was significantly disrupted in mdp60 mutant cells and MDP60-overexpressing seedlings. These findings indicate that MDP60 is an important mediator of hypocotyl cell elongation. This study reveals a mechanism in which light and ethylene signaling coordinate MDP60 expression to modulate hypocotyl cell elongation by altering cortical microtubules in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Etilenos/farmacologia , Hipocótilo/citologia , Luz , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/efeitos da radiação , Modelos Biológicos , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiaçãoRESUMO
BACKGROUND: Centromere Protein F (CENPF) associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers. The role of CENPF in breast cancer (BC) bone metastasis remains unclear. METHODS: Using the ONCOMINE database, we compared the expression of CENPF in breast cancer and normal tissues. Findings were confirmed in 60 BC patients through immunohistochemical (IHC) staining. Microarray data from GEO and Kaplan-Meier plots were used analyze the overall survival (OS) and relapse free survival (RFS). Using the GEO databases, we compared the expression of CENPF in primary lesions, lung metastasis lesions and bone metastasis lesions, and validated our findings in BALB/C mouse 4T1 BC models. Based on gene set enrichment analysis (GSEA) and western blot, we predicted the mechanisms by which CENPF regulates BC bone metastasis. RESULTS: The ONCOMINE database and immunohistochemical (IHC) showed higher CENPF expression in BC tissue compared to normal tissue. Kaplan-Meier plots also revealed that high CENPF mRNA expression correlated to poor survival and shorter progression-free survival (RFS). From BALB/C mice 4T1 BC models and the GEO database, CENPF was overexpressed in primary lesions, other target organs, and in bone metastasis. Based on gene set enrichment analysis (GSEA) and western blot, we predicted that CENPF regulates the secretion of parathyroid hormone-related peptide (PTHrP) through its ability to activate PI3K-AKT-mTORC1. CONCLUSION: CENPF promotes BC bone metastasis by activating PI3K-AKT-mTORC1 signaling and represents a novel therapeutic target for BC treatment.
RESUMO
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Técnicas de Inativação de Genes , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Microtúbulos/metabolismo , Ligação ProteicaRESUMO
Colloidal media with well-defined optical properties have been widely used as model systems in many fundamental and applied studies of light-matter interactions in complex media. Recent progress in the field of engineered nanoscale optical materials with fundamentally new physical properties opens new opportunities for tailoring the properties of colloids. In this work, we experimentally demonstrate the evolution of the optical vortex beams of different topological charges propagating in engineered nano-colloidal suspension of negative polarizability with saturable nonlinearities. Due to the high power of the incident beam, the modulation instability leads to an exponential growth of weak perturbations and thus splits the original vortex beam into a necklace beam consisting of several bright spots. At a fixed power, the number of observed bright spots is intrinsically determined by the topological charge of the incident beam and agrees well with the predictions of our linear stability analysis and numerical simulations. Besides contributing to the fundamental science of light-matter interactions in engineered soft-matter media, this work opens new opportunities for dynamic optical manipulation and transmission of light through scattering media as well as formation of complex optical patterns and light filamentation in naturally existing colloids such as fog and clouds.
RESUMO
Ultra-compact, low-loss, fast, and reconfigurable optical components, enabling manipulation of light by light, could open numerous opportunities for controlling light on the nanoscale. Nanostructured all-dielectric metasurfaces have been shown to enable extensive control of amplitude and phase of light in the linear optical regime. Among other functionalities, they offer unique opportunities for shaping the wave front of light to introduce the orbital angular momentum (OAM) to a beam. Such structured light beams bring a new degree of freedom for applications ranging from spectroscopy and micromanipulation to classical and quantum optical communications. To date, reconfigurability or tuning of the optical properties of all-dielectric metasurfaces have been achieved mechanically, thermally, electrically or optically, using phase-change or nonlinear optical materials. However, a majority of demonstrated tuning approaches are either slow or require high optical powers. Arsenic trisulfide (As2S3) chalcogenide glass offering ultra-fast and large χ(3)nonlinearity as well as a low two-photon absorption coefficient in the near and mid-wave infrared spectral range, could provide a new platform for the realization of fast and relatively low intensity reconfigurable metasurfaces. Here, we design and experimentally demonstrate an As2S3 chalcogenide glass based metasurface that enables reshaping of a conventional Hermite-Gaussian beam with no OAM into an OAM beam at low intensity levels, while preserves the original beam's amplitude and phase characteristics at high intensity levels. The proposed metasurface could find applications for a new generation of optical communication systems and optical signal processing.
RESUMO
Fully-conjugated styrylbenzoxazoles and styrylbenzothiazoles of BOAF24, BOACl24, BOACl35, BOABr24, BOABr35, BTAF24, BTACl24 and BTABr24 without traditional gelation groups could form organogels. It was found that introduction of chlorine atoms in the 2,4-positions of the phenyl group would improve gelation abilities, and benzothiazole derivatives exhibited better gelation abilities than benzoxazoles with a similar π-skeleton due to better π-electron delocalization. Interestingly, the organogel of BTACl24 could change into solution by UV light due to trans-cis isomerization, which could also induce morphological changes in xerogels. The smooth organogel nanofibers stretched out lots of thin 'arms' to hold together or to catch other nanofibers upon UV irradiation, so more entangled networks were generated. Moreover, TFA (trifluoroacetic acid) could induce a gel-sol transformation on account of the protonation of the benzoxazole or benzothiazole unit, accompanied by emission quenching. BTACl24 exhibited higher performance than BOACl24 in the detection of TFA because of its strong basicity. The decay time and the detection limit of BTACl24 in xerogel-based film towards TFA vapor were of 0.7 s and 0.3 ppm, respectively. Therefore, organogelation of non-traditional organogelators is a powerful approach to the fabrication of multi-stimuli-responsive soft materials, and provides a new method to generate more entangled 3D networks through photochemical reactions in xerogels.