Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(9): e0195721, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412346

RESUMO

African swine fever is a lethal hemorrhagic disease of pigs caused by African swine fever virus (ASFV), which greatly threatens the pig industry in many countries. Deletion of virulence-associated genes to develop live attenuated ASF vaccines is considered to be a promising strategy. A recent study has revealed that the A137R gene deletion results in ASFV attenuation, but the underlying mechanism remains unknown. To elucidate the mechanism of the A137R gene regulating ASFV virulence, an ASFV mutant with the A137R gene deleted (ASFV-ΔA137R) was generated based on the wild-type ASFV HLJ/2018 strain (ASFV-WT). Using transcriptome sequencing analysis, we found that ASFV-ΔA137R induced higher type I interferon (IFN) production in primary porcine alveolar macrophages (PAMs) than did ASFV-WT. Overexpression of the A137R protein (pA137R) inhibited the activation of IFN-ß or IFN-stimulated response element. Mechanistically, pA137R interacts with TANK-binding kinase 1 (TBK1) and promotes the autophagy-mediated lysosomal degradation of TBK1, which blocks the nuclear translocation of interferon regulator factor 3, leading to decreased type I IFN production. Taken together, our findings clarify that pA137R negatively regulates the cGAS-STING-mediated IFN-ß signaling pathway via the autophagy-mediated lysosomal degradation of TBK1, which highlights the involvement of pA137R regulating ASFV virulence. IMPORTANCE African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. Several virulence-associated genes of ASFV have been identified, but the underlying attenuation mechanisms are not clear. Compared with the virulent parental ASFV, the A137R gene-deleted ASFV mutant promoted the expression of type I interferon (IFN) in primary porcine alveolar macrophages. Further analysis indicated that the A137R protein negatively regulated the cGAS-STING-mediated IFN-ß signaling pathway through targeting TANK-binding kinase 1 (TBK1) for autophagy-mediated lysosomal degradation. This study not only facilitates the understanding of ASFV immunoevasion strategies, but also provides new clues to the development of live attenuated ASF vaccines.


Assuntos
Vírus da Febre Suína Africana , Autofagia , Interferon beta , Proteínas Serina-Treonina Quinases , Proteínas Virais , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Interferon beta/metabolismo , Lisossomos/metabolismo , Macrófagos Alveolares/virologia , Proteínas de Membrana , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Suínos , Proteínas Virais/genética , Virulência
2.
Microsyst Nanoeng ; 10: 50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595947

RESUMO

As a reinforcement technology that improves load-bearing ability and prevents injuries, assisted exoskeleton robots have extensive applications in freight transport and health care. The perception of gait information by such robots is vital for their control. This information is the basis for motion planning in assistive and collaborative functions. Here, a wearable gait recognition sensor system for exoskeleton robots is presented. Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability. Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions. In addition, the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition. The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%, and the effectiveness of the system is further verified through testing on an exoskeleton robot.

3.
Viruses ; 14(10)2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36298673

RESUMO

African swine fever (ASF) is a widespread hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), currently threatening the pig industry worldwide. Here, we demonstrated that the cell-adapted strain ASFV-P121 with a 24.5-kb deletion in the left variable region (LVR) lost the ability to replicate in primary porcine alveolar macrophages (PAMs). To explore whether this deletion determines the inability of ASFV-P121 replication in PAMs, a mutant virus (ASFV-ΔLVR) with the same LVR deletion as ASFV-P121 was constructed based on the wild-type ASFV HLJ/18 (ASFV-WT). However, the growth titer of ASFV-ΔLVR only reduced 10-fold compared with ASFV-WT in PAMs. Furthermore, we found that the large deletion of the LVR does not affect the formation of virus factories and virion morphogenesis. These findings reveal important implications for analyzing the molecular mechanism of ASFV cell tropism change.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Macrófagos Alveolares , Virulência , Células Cultivadas
4.
Vet Microbiol ; 263: 109245, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649011

RESUMO

African swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). Cleaning and disinfection remain one of the most effective tools to prevent the ASFV spread in pig holdings. This study evaluated the inactivation effect of a highly complexed iodine (HPCI) disinfectant against ASFV. A commercially available povidone-iodine (PVP-I) was used as reference for comparison. The results showed that 5% HPCI and 5% PVP-I did not exhibit cytotoxicity in primary porcine alveolar macrophages, and 107.0 and 105.0 TCID50/mL ASFV were completely inactivated by 5% and 0.25% HPCI, respectively, in 5 min via either immersion or spray disinfection. However, 5% PVP-I required at least 15 min to completely inactivate 107.0 TCID50/mL ASFV, whereas 0.25% PVP-I failed to completely inactivate 105.0 TCID50/mL ASFV. This study demonstrated that HPCI could rapidly and efficiently inactivate ASFV, representing an effective disinfectant for ASF control.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Criação de Animais Domésticos , Desinfetantes , Iodo , Doenças dos Suínos , Inativação de Vírus , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/efeitos dos fármacos , Criação de Animais Domésticos/métodos , Animais , Desinfetantes/farmacologia , Iodo/farmacologia , Povidona-Iodo/farmacologia , Suínos , Doenças dos Suínos/prevenção & controle
5.
Transbound Emerg Dis ; 68(5): 2853-2866, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34314096

RESUMO

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with high morbidity and mortality in domestic pigs. Although adaptation of ASFV to Vero cells has been investigated, the phenotypic changes and the corresponding genomic variations during adaptation of ASFV to other cell lines remain unclear. To obtain a cell-adapted ASFV strain, different cell lines were tested to determine whether they support ASFV infection. Interestingly, the ASFV wild-type strain ASFV-HLJ/18 can infect HEK293T cells and replicate at a low level. After continuous passaging, the adapted ASFV strain can replicate efficiently in both HEK293T and Vero cells. However, the adapted ASFV strain displayed reduced infectivity in primary porcine alveolar macrophages compared to the corresponding wild-type strain. Furthermore, stepwise losses at the left variable end of the MGF genes and accumulative mutations were identified during passaging, indicating that the ASFV strain gradually adapted to HEK293T cells. Comparison of MGF deletions in other cell culture-adapted ASFV strains revealed that the deletions of MGF300 (1L, 2R and 4L) and MGF360 genes (8L, 9L, 10L and 11L) play an important role for the adaptation of ASFV to HEK293T cells at the early stage. The biological functions of the deletions and mutants associated with ASFV infection in HEK293T cells and pigs warrant further study. Overall, our findings provide new targets to elucidate the molecular mechanism of adaptation of ASFV to cell lines.


Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Sus scrofa , Suínos , Células Vero , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA