Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955772

RESUMO

Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.


Assuntos
Metais Pesados , MicroRNAs , Antioxidantes , Metais Pesados/toxicidade , MicroRNAs/genética , Plantas/genética , Estresse Fisiológico/genética
2.
Plants (Basel) ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653858

RESUMO

Ilex verticillata is not only an excellent ornamental tree species for courtyards, but it is also a popular bonsai tree. 'Oosterwijk' and 'Red sprite' are two varieties of Ilex verticillata. The former has a long stem with few branches, while the latter has a short stem. In order to explain the stem growth differences between the two cultivars 'Oosterwijk' and 'Red sprite', determination of the microstructure, transcriptome sequence and IAA content was carried out. The results showed that the xylem thickness, vessel area and vessel number of 'Oosterwijk' were larger than in 'Red sprite'. In addition, our analysis revealed that the differentially expressed genes which were enriched in phenylpropanoid biosynthesis; phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis in the black and tan modules of the two varieties. We found that AST, HCT and bHLH 94 may be key genes in the formation of shoot difference. Moreover, we found that the IAA content and auxin-related DEGs GH3.6, GH3, ATRP5, IAA27, SAUR36-like, GH3.6-like and AIP 10A5-like may play important roles in the formation of shoot differences. In summary, these results indicated that stem growth variations of 'Oosterwijk' and 'Red sprite' were associated with DEGs related to phenylpropanoid biosynthesis, phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis, as well as auxin content and DEGs related to the auxin signaling pathway.

3.
Plants (Basel) ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514341

RESUMO

4,8-dihydroxy-l-tetralone (4,8-DHT) is an allelochemical isolated from the outer bark of Carya cathayensis that acts as a plant growth inhibitor. In order to explore the mechanism of 4,8-DHT inhibiting weed activity, we treated three species of Digitaria sanguinalis, Arabidopsis thaliana, and Poa annua with different concentrations of 4,8-DHT and performed phenotype observation and transcriptome sequencing. The results showed that with an increase in 4,8-DHT concentration, the degree of plant damage gradually deepened. Under the same concentration of 4,8-DHT, the damage degree of leaves and roots of Digitaria sanguinalis was the greatest, followed by Arabidopsis thaliana, while Poa annua had the least damage, and the leaves turned slightly yellow. Transcriptome data showed that 24536, 9913, and 1662 differentially expressed genes (DEGs) were identified in Digitaria sanguinalis, Arabidopsis thaliana, and Poa annua, respectively. These DEGs were significantly enriched in photosynthesis, carbon fixation, glutathione metabolism, phenylpropanoid biosynthesis, and oxidative phosphorylation pathways. In addition, DEGs were also enriched in plant hormone signal transduction and the MAPK signal pathway in Arabidopsis thaliana. Further analysis showed that after 4,8-DHT treatment, the transcript levels of photosynthesis PSI- and PSII-related genes, LHCA/B-related genes, Rubisco, and PEPC were significantly decreased in Digitaria sanguinalis and Arabidopsis thaliana. At the same time, the transcription levels of genes related to glutathione metabolism and the phenylpropanoid biosynthesis pathway in Digitaria sanguinalis were also significantly decreased. However, the expression of these genes was upregulated in Arabidopsis thaliana and Poa annua. These indicated that 4,8-DHT affected the growth of the three plants through different physiological pathways, and then played a role in inhibiting plant growth. Simultaneously, the extent to which plants were affected depended on the tested plants and the content of 4,8-DHT. The identification of weed genes that respond to 4,8-DHT has helped us to further understand the inhibition of plant growth by allelochemicals and has provided a scientific basis for the development of allelochemicals as herbicides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA