Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 101: 78-86, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31791693

RESUMO

Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.


Assuntos
Células Endoteliais/metabolismo , Fibrose/metabolismo , Animais , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose/patologia , Humanos
2.
Methods ; 101: 21-6, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546730

RESUMO

Human pluripotent stem cells (hPSCs)-derived cardiomyocytes (hPSC-CMs) represent a potential indefinite cell supply for cardiac tissue engineering and possibly regenerative medicine applications. However, these cells are immature compared with adult ventricular cardiomyocytes. In order to overcome this limitation, an engineered platform, called biowire, was devised to provide cultured cardiomyocytes important biomimetic cues present during embryo development, such as three-dimensional cell culture, extracellular matrix composition, soluble factors and pacing through electrical stimulation, to induce the maturation of hPSC-CMs in vitro.


Assuntos
Técnicas de Cultura de Células , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular , Estimulação Elétrica , Humanos
3.
J Biol Chem ; 289(24): 16924-35, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24794871

RESUMO

p27(Kip1) (p27), a key regulator of cell division, has been implicated in autophagy of cancer cells. However, its role in autophagy, the evolutionarily conserved catabolic process that enables cells to remove unwanted proteins and damaged organelles, had not been examined in the heart. Here we report that ectopic delivery of a p27 fusion protein (TAT-p27) was sufficient to induce autophagy in neonatal rat ventricular cardiomyocytes in vitro, under basal conditions and after glucose deprivation. Conversely, lentivirus-delivered shRNA against p27 successfully reduced p27 levels and suppressed basal and glucose-deprived levels of autophagy in cardiomyocytes in vitro. Glucose deprivation mimics myocardial ischemia and induces apoptosis in cardiomyocytes. During glucose deprivation, TAT-p27 inhibited apoptosis, whereas down-regulation of p27 decreased survival of cardiomyocytes. However, inhibition of autophagy by pharmacological (3-methyladenine, chloroquine, or bafilomycin A1) or genetic approaches (siRNA-mediated knockdown of Atg5) sensitized cardiomyocytes to glucose deprivation-induced apoptosis, even in the presence of TAT-p27. TAT-p27 was also able to provoke greater levels of autophagy in resting and fasting cardiomyocytes in vivo. Further, TAT-p27 enhanced autophagy and repressed cardiomyocytes apoptosis, improved cardiac function, and reduced infarct size following myocardial infarction. Again, these effects were lost when cardiac autophagy in vivo was blocked by chloroquine. Taken together, these data show that p27 positively regulates cardiac autophagy in vitro and in vivo, at rest and after metabolic stress, and that TAT-p27 inhibits apoptosis by promoting autophagy in glucose-deprived cardiomyocytes in vitro and in post-myocardial infarction hearts in vivo.


Assuntos
Apoptose , Autofagia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Glucose/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Wistar
4.
Materials (Basel) ; 16(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687591

RESUMO

La-Sr co-doped Ba1-x(La0.5Sr0.5)xCo2Fe16O27 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively) hexaferrites were prepared by the solid-state method. W-type hexaferrite single phase structure with space group P63/mmc was obtained when the doping amount was x < 0.4 and an M-type hexaferrite and a spinel phase with smaller grains gradually replaced the W phase as the primary phases when x ≥ 0.6. The maximum Ms is 76.2 emu/g and the minimum Hc is 60 Oe at x = 0.4, as obtained by VSM analysis. The magnetoelectric properties of the samples were tested at 1-18 GHz with a vector network analyzer and the reflection loss was calculated based on transmission line theory. It was found that the introduction of an appropriate amount of La-Sr provides a large number of porosity defects while increasing the grain size, which can effectively improve the reflection of electromagnetic waves inside the material and dissipate more energy. At the same time, co-doping also makes the resonance frequency of the samples shift to lower frequency, resulting in tunable absorption properties in the C, X and Ku bands. When x = 0.2, the minimum reflection loss is -40.61 dB at 1.5 mm thickness, with the effective absorption bandwidth of 5.76 GHz in the X band; when x = 0.4, the minimum reflection loss is -37.45 dB at 2.5 mm, with the bandwidth of 4.97 GHz in the C band; when x = 0.6, the material has good absorption in both the X and Ku bands with the thickness less than 2 mm. The simple preparation method and good performance make La-Sr co-doped Co2W ferrite a promising microwave absorbing material.

5.
ACS Mater Au ; 3(4): 360-370, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38090129

RESUMO

Cardiac fibrosis is a significant contributor to heart failure and is characterized by abnormal ECM deposition and impaired contractile function. We have previously developed a model of cardiac fibrosis via TGF-ß treatment of engineered microtissues using heart-on-a-chip technology which incorporates human induced pluripotent stem cell-derived cardiomyocytes and cardiac fibroblasts. Here, we describe that these cardiac fibrotic tissues expressed markers associated with cellular senescence via transcriptomic analysis. Treatment of fibrotic tissues with the senolytic drugs dasatinib and quercetin (D+Q) led to an improvement of contractile function, reduced passive tension, and downregulated senescence-related gene expression, an outcome we were previously unable to achieve using standard-of-care drugs. The improvement in functional parameters was also associated with a reduction in fibroblast density, though no changes in absolute collagen deposition were observed. This study demonstrates the benefit of senolytic treatment for cardiac fibrosis in a human-relevant model, supporting data in animal models, and will enable the further elucidation of cell-specific effects of senolytics and how they impact cardiac fibrosis and senescence.

6.
J Mol Cell Cardiol ; 53(6): 820-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985930

RESUMO

The E2F4-p130 transcriptional repressor complex is a cell-cycle inhibitor in mitotic cells. However, the role of E2F4/p130 in differentiated cells is largely unknown. We investigated the role of E2F4/p130 in the regulation of apoptosis in postmitotic cardiomyocytes. Here we demonstrate that E2F4 can inhibit hypoxia-induced cell death in isolated ventricular cardiomyocytes. As analyzed by chromatin immunoprecipitation, the E2F4-p130-repressor directly blocks transcription of essential apoptosis-related genes, E2F1, Apaf-1, and p73α through recruitment of histone deacetylase 1 (HDAC1). In contrast, diminution of the E2F4-p130-HDAC1-repressor and recruitment of E2F1 and histone acetylase activity to these E2F-regulated promoters is required for the execution of cell death. Expression of kinase-dead HDAC1.H141A or HDAC-binding deficient p130ΔHDAC1 abolishes the antiapoptotic effect of E2F4. Moreover, histological examination of E2F4(-/-) hearts revealed a markedly enhanced degree of cardiomyocyte apoptosis. Taken together, our genetic and biochemical data delineate an essential negative function of E2F4 in cardiac myocyte apoptosis.


Assuntos
Apoptose , Fator de Transcrição E2F4/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/genética , Núcleo Celular/metabolismo , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F4/genética , Histona Desacetilase 1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Ratos
7.
Nat Protoc ; 17(12): 2721-2738, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224469

RESUMO

Despite recent advances in the differentiation of human pluripotent stem cells into multiple cell types for application in replacement therapies, tissue vascularization remains a bottleneck for regenerative medicine. Fragments of primary microvessels (MVs) harvested from adipose tissue retain endothelialized lumens and perivascular cell coverage. We have used these MVs to support the survival and engraftment of transplanted human pluripotent stem cell-derived cardiomyocytes, pancreatic progenitors or primary human islets. MVs connect with host vessels, perfuse with blood and form a hierarchal vascular network in vivo after subcutaneous or intracardiac transplantation. MVs also display the ability to remodel and form stable vascular networks with long-term retention (>3.5 months). MVs can be cultured in 3D hydrogels in vitro, where they retain vessel shape and undergo angiogenic sprouting without the need for exogenous growth factor supplementation. Therefore, MVs offer a robust vascularization strategy for regenerative medicine approaches and a platform for angiogenic studies and drug testing in vitro. Here we describe in detail the protocol for: (1) the isolation of MVs from rat epididymal fat by limited collagenase digestion, followed by size-selective sieving; (2) the incorporation of MVs into 3D collagen hydrogels; (3) the in vitro culture of MVs in 3D gels for angiogenic studies; and (4) the in vivo transplantation of 3D hydrogels containing MVs into the mouse subcutis. The isolation procedure does not require highly specific equipment and can be performed in ~3 h by researchers with experience in rodent handling and cell culture.


Assuntos
Hidrogéis , Microvasos , Animais , Camundongos , Ratos , Tecido Adiposo/metabolismo , Diferenciação Celular , Colágeno , Neovascularização Fisiológica
8.
Front Cardiovasc Med ; 9: 886687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665251

RESUMO

Aim: To uncover sex-related microvascular abnormalities that underlie the early presentation of reduced perfusion in leg skeletal muscle in a type II rat model of diabetic cardiomyopathy. Methods and Results: Diabetes was induced using a non-obese, diet-based, low-dose streptozotocin model in adult female (18 diabetic, 9 control) and male rats (29 diabetic, 11 control). Time-course monitoring over 12 months following diabetes induction was performed using echocardiography, treadmill exercise, photoacoustic imaging, flow-mediated dilation (FMD), histopathology, and immunohistochemistry. Diabetic rats maintained normal weights. Hypertension appeared late in both diabetic males (7 months) and females (10 months), while only diabetic males had elevated cholesterol (7 months). On echocardiography, all diabetic animals maintained normal ejection fraction and exhibited diastolic dysfunction, mild systolic dysfunction, and a slightly enlarged left ventricle. Exercise tolerance declined progressively and early in males (4 months), later in females (8 months); FMD showed lower baseline femoral arterial flow but unchanged reactivity in both sexes (5 months); and photoacoustic imaging showed lower tissue oxygen saturation in the legs of diabetic males (4 months) and diabetic females (10 months). Myocardial perfusion was normal in both sexes. Histopathology at the final timepoint of Month 10 (males) and Month 12 (females) revealed that myocardial microvasculature was normal in both vessel density and structure, thus explaining normal perfusion on imaging. However, leg muscle microvasculature exhibited perivascular smooth muscle thickening around small arterioles in diabetic females and around large arterioles in diabetic males, explaining the depressed readings on photoacoustic and FMD. Histology also confirmed the absence of commonly reported HFpEF markers, including microvessel rarefaction, myocardial fibrosis, and left ventricular hypertrophy. Conclusion: Exercise intolerance manifesting early in the progression of diabetic cardiomyopathy can be attributed to decreased perfusion to the leg skeletal muscle due to perivascular smooth muscle thickening around small arterioles in females and large arterioles in males. This microvascular abnormality was absent in the myocardium, where perfusion levels remained normal throughout the study. We conclude that although skeletal muscle microvascular dysfunction of the vasculature presents at different levels depending on sex, it consistently presents early in both sexes prior to overt cardiac changes such as rarefaction, fibrosis, or hypertrophy.

9.
J Econ Entomol ; 114(2): 891-902, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33503252

RESUMO

The plant bug Lygus pratensis Linnaeus (Hemiptera: Miridae) is an important insect pest of alfalfa in grassland farming in northern China. A field population of L. pratensis was selected in the laboratory for 14 consecutive generations with lambda-cyhalothrin to generate 42.555-fold resistance. Selection also induced low cross-resistance to imidacloprid and beta-cypermethrin, and medium cross-resistance to deltamethrin. Realized heritability (h2) of lambda-cyhalothrin resistance was 0.339. Susceptible baselines of L. pratensis were established for five insecticides using the glass-vial method, the values of which were 6.849, 3.423, 8.778, 3.559, and 117.553 ng/cm2 for phoxim, methomyl, imidacloprid, lambda-cyhalothrin, and avermectin, respectively, along with the calculated LC99 diagnostic doses. This resistance risk assessment study suggests that a high risk of lambda-cyhalothrin resistance exists in the field. In addition, a 5-year field investigation of resistance monitoring of L. pratensis was conducted in seven alfalfa regions in farming-pastoral ecotones in northern China. The resistance levels of most populations were very low for phoxim, methomyl, and avermectin, with an upward trend for lambda-cyhalothrin resistance in the DK (Dengkou County), TKT (Tuoketuo County), XL (Xilinhot), and LX (Linxi County) populations during 2015-2019, and medium resistance level to imidacloprid in the TKT population in five years we sampled. The study provided information on chemical control, lambda-cyhalothrin resistance development, baseline susceptibility, and the status of resistance to five commonly-used insecticides against L. pratensis. These results could be used to optimize pyrethroid insecticide use as part of a pest integrated resistance management strategy against this key insect pest of alfalfa.


Assuntos
Inseticidas , Piretrinas , Agricultura , Animais , China , Resistência a Inseticidas , Inseticidas/farmacologia , Laboratórios , Nitrilas , Medição de Risco
10.
Cell Stem Cell ; 28(11): 1936-1949.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480863

RESUMO

Islet transplantation is a promising treatment for type 1 diabetes (T1D), yet the low donor pool, poor islet engraftment, and life-long immunosuppression prevent it from becoming the standard of care. Human embryonic stem cell (hESC)-derived pancreatic cells could eliminate donor shortages, but interventions to improve graft survival are needed. Here, we enhanced subcutaneous engraftment by employing a unique vascularization strategy based on ready-made microvessels (MVs) isolated from the adipose tissue. This resulted in improved cell survival and effective glucose response of both human islets and hESC-derived pancreatic cells, which ameliorated preexisting diabetes in three mouse models of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Embrionárias Humanas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/terapia , Humanos , Camundongos , Microvasos
11.
Dev Genes Evol ; 220(7-8): 207-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21061018

RESUMO

In the developing Drosophila trachea, extensive cell migration lays the foundation for an elaborate network of tubules to form. This process is controlled by the Drosophila fibroblast growth factor receptor, known as Breathless (Btl), whose expression is activated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix (bHLH)-PAS transcription factors. We previously identified the jing zinc finger transcription factor as a gene sensitive to the dosage of bHLH-PAS transcriptional activity and showed that its mutations interact genetically with those of trh and btl. Here, we demonstrate that jing is required for btl expression in the branching trachea and dominantly interacts with known regulators of btl expression, including the ETS and POU transcription factors, pointed, and drifter/ventral veinless, respectively. Furthermore, the zinc finger-containing C-terminus of Jing associates with a btl tracheal enhancer in a Trh/Tgo-dependent manner in chromatin immunoprecipitation assays in vitro and interferes with btl in vitro and in vivo. Together, our results support a model by which Jing/Trh/Tgo complexes regulate btl transcript levels during primary tracheal branching.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/crescimento & desenvolvimento , Retroalimentação Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Fatores do Domínio POU/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Traqueia/crescimento & desenvolvimento , Traqueia/metabolismo , Fatores de Transcrição/química
12.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967972

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Diferenciação Celular , Células Endoteliais , Humanos , Microvasos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Ratos
13.
J Clin Invest ; 130(3): 1392-1404, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31985487

RESUMO

Mechanisms mediating the cardioprotective actions of glucagon-like peptide 1 (GLP-1) were unknown. Here, we show in both ex vivo and in vivo models of ischemic injury that treatment with GLP-1(28-36), a neutral endopeptidase-generated (NEP-generated) metabolite of GLP-1, was as cardioprotective as GLP-1 and was abolished by scrambling its amino acid sequence. GLP-1(28-36) enters human coronary artery endothelial cells (caECs) through macropinocytosis and acts directly on mouse and human coronary artery smooth muscle cells (caSMCs) and caECs, resulting in soluble adenylyl cyclase Adcy10-dependent (sAC-dependent) increases in cAMP, activation of protein kinase A, and cytoprotection from oxidative injury. GLP-1(28-36) modulates sAC by increasing intracellular ATP levels, with accompanying cAMP accumulation lost in sAC-/- cells. We identify mitochondrial trifunctional protein-α (MTPα) as a binding partner of GLP-1(28-36) and demonstrate that the ability of GLP-1(28-36) to shift substrate utilization from oxygen-consuming fatty acid metabolism toward oxygen-sparing glycolysis and glucose oxidation and to increase cAMP levels is dependent on MTPα. NEP inhibition with sacubitril blunted the ability of GLP-1 to increase cAMP levels in coronary vascular cells in vitro. GLP-1(28-36) is a small peptide that targets novel molecular (MTPα and sAC) and cellular (caSMC and caEC) mechanisms in myocardial ischemic injury.


Assuntos
Cardiotônicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mitocôndrias Cardíacas/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Animais , Vasos Coronários/metabolismo , Vasos Coronários/patologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Peptídeo 1 Semelhante ao Glucagon/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Sistemas do Segundo Mensageiro/genética
14.
Biomaterials ; 233: 119741, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927251

RESUMO

While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-ß was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function.


Assuntos
Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas , Células Cultivadas , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia
15.
Genetics ; 173(3): 1397-415, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16648585

RESUMO

Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Previous studies showed that the midline function of the jing C2H2-type zinc-finger transcription factor was only partially required for axon scaffold formation in the Drosophila CNS. We therefore screened for gain-of-function enhancers of jing gain of function in the eye and identified the Drosophila homolog of the disease gene of human alpha-thalassemia/mental retardation X-linked (ATR-X) as well as other genes with potential roles in gene expression, translation, synaptic transmission, and cell cycle. jing and DATR-X reporter genes are expressed in both CNS neurons and glia, including the LG. Coexpression of jing and DATR-X in embryonic neurons synergistically affects longitudinal connective formation. During embryogenesis, jing and DATR-X have autonomous and nonautonomous roles in the lateral positioning of LG, neurons, and longitudinal axons as shown by cell-specific knockdown of gene expression. jing and DATR-X are also required autonomously for glial survival. jing and DATR-X mutations show synergistic effects during longitudinal axon formation suggesting that they are functionally related. These observations support a model in which downstream gene expression controlled by a potential DATR-X-Jing complex facilitates cellular positioning and axon guidance, ultimately allowing for proper connectivity in the developing Drosophila CNS.


Assuntos
Axônios/fisiologia , DNA Helicases/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas de Ciclo Celular/química , DNA Helicases/genética , Reparo do DNA , Drosophila/genética , Proteínas de Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Dados de Sequência Molecular , Mutagênese , Neuroglia/citologia , Neurônios/citologia , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/química , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/genética
16.
J Vis Exp ; (123)2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28518082

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been a promising cell source and have thus encouraged the investigation of their potential applications in cardiac research, including drug discovery, disease modeling, tissue engineering, and regenerative medicine. However, cells produced by existing protocols display a range of immaturity compared with native adult ventricular cardiomyocytes. Many efforts have been made to mature hPSC-CMs, with only moderate maturation attained thus far. Therefore, an engineered system, called biowire, has been devised by providing both physical and electrical cues to lead hPSC-CMs to a more mature state in vitro. The system uses a microfabricated platform to seed hPSC-CMs in collagen type I gel along a rigid template suture to assemble into aligned cardiac tissue (biowire), which is subjected to electrical field stimulation with a progressively increasing frequency. Compared to nonstimulated controls, stimulated biowired cardiomyocytes exhibit an enhanced degree of structural and electrophysiological maturation. Such changes are dependent upon the stimulation rate. This manuscript describes in detail the design and creation of biowires.


Assuntos
Diferenciação Celular , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Humanos
17.
Front Cell Dev Biol ; 5: 19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337437

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) represent a potential unlimited cell supply for cardiac tissue engineering and possibly regenerative medicine applications. However, hPSC-CMs produced by current protocols are not representative of native adult human cardiomyocytes as they display immature gene expression profile, structure and function. In order to improve hPSC-CM maturity and function, various approaches have been developed, including genetic manipulations to induce gene expression, delivery of biochemical factors, such as triiodothyronine and alpha-adrenergic agonist phenylephrine, induction of cell alignment in 3D tissues, mechanical stress as a mimic of cardiac load and electrical stimulation/pacing or a combination of these. In this mini review, we discuss biomimetic strategies for the maturation for hPSC-CMs with a particular focus on electromechanical conditioning methods.

18.
Biomaterials ; 119: 23-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27988406

RESUMO

Cell-based tissue engineering is a potential treatment alternative for organ replacement. However, the lack of a robust vasculature, especially in the context of diseases such as diabetes, is a major hindrance to its success. Despite extensive research on the effects of diabetes in angiogenic sprouting, its effects on vessel arterio-venous (AV) specification have not been addressed. Using an engineered tissue that yields functional vessels with characteristic AV identities, we demonstrate that type 1 diabetes negatively affects vessel AV specification and perivascular cell (PVC) coverage. Blockage of PVC recruitment in normoglycemia does not affect blood flow parameters, but recapitulates the vascular immaturity found in diabetes, suggesting a role for PVCs in AV specification. The downregulation of Jagged1 and Notch3, key modulators of endothelial-perivascular interaction, observed in diabetes support this assertion. Co-culture assays indicate that PVCs induce arterial identity specification by inducing EphrinB2 and downregulating EphB4. This is antagonized by high glucose or blockage of endothelial Jagged1. Engineered tissues composed of microvessels from diabetic mice display normal PVC coverage and Jagged1/Notch3 gene expression when implanted into non-diabetic hosts. These indicate a lack of legacy effect and support the use of a more aggressive treatment of diabetes in patients undergoing revascularization therapies.


Assuntos
Anastomose Arteriovenosa/crescimento & desenvolvimento , Órgãos Bioartificiais , Vasos Sanguíneos/crescimento & desenvolvimento , Diabetes Mellitus Tipo 1/fisiopatologia , Células Epiteliais/patologia , Neovascularização Patológica/fisiopatologia , Engenharia Tecidual/métodos , Animais , Anastomose Arteriovenosa/patologia , Vasos Sanguíneos/patologia , Diabetes Mellitus Tipo 1/patologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia
19.
Adv Drug Deliv Rev ; 96: 183-94, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26056716

RESUMO

The primary function of vascular networks is to transport blood and deliver oxygen and nutrients to tissues, which occurs at the interface of the microvasculature. Therefore, the formation of the vessels at the microcirculatory level, or angiogenesis, is critical for tissue regeneration and repair. Current strategies for vascularization of engineered tissues have incorporated multi-disciplinary approaches including engineered biomaterials, cells and angiogenic factors. Pre-vascularization of scaffolds composed of native matrix, synthetic polymers, or other biological materials can be achieved through the use of single cells in mono or co-culture, in combination or not with angiogenic factors or by the use of isolated vessels. The advance of these methods, together with a growing understanding of the biology behind vascularization, has facilitated the development of vascularization strategies for engineered tissues with therapeutic potential for tissue regeneration and repair. Here, we review the different cell-based strategies utilized to pre-vascularize engineered tissues and in making more complex vascularized cardiac tissues for regenerative medicine applications.


Assuntos
Bioprótese , Prótese Vascular , Coração/fisiologia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Técnicas de Cocultura , Células Endoteliais/citologia , Humanos , Microcirculação/fisiologia , Microvasos/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Células-Tronco/citologia , Alicerces Teciduais/química
20.
Biomed Mater ; 10(3): 034005, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040708

RESUMO

Cardiovascular diseases remain the leading cause of death globally. Since the adult heart lacks the capacity to regenerate, loss of myocardium following myocardial infarction is irreversible and ultimately leads to failure to maintain cardiac function. In order to repopulate the areas of cell loss in the damaged hearts for restoration of cardiac function, cell transplantation/replacement has been extensively investigated. Recently, biomaterials have emerged as an approach to improve delivery and viability of cells for the regeneration of the damaged heart. Here we review the most common approaches in hydrogel-based cardiac tissue regeneration with particular focus on the implementation of hydrogels to improve cell delivery.


Assuntos
Materiais Biocompatíveis , Transplante de Células , Coração/fisiologia , Regeneração , Adulto , Animais , Modelos Animais de Doenças , Humanos , Hidrogéis , Teste de Materiais , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Medicina Regenerativa , Transplante de Células-Tronco , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA