Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Immunity ; 49(1): 178-193.e7, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958801

RESUMO

The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets. Co-injecting tumor cell clones revealed the non-T-cell-inflamed phenotype is dominant and that both quantitative and qualitative features of intratumoral CD8+ T cells determine response to therapy. Transcriptomic and epigenetic analyses revealed tumor-cell-intrinsic production of the chemokine CXCL1 as a determinant of the non-T-cell-inflamed microenvironment, and ablation of CXCL1 promoted T cell infiltration and sensitivity to a combination immunotherapy regimen. Thus, tumor cell-intrinsic factors shape the tumor immune microenvironment and influence the outcome of immunotherapy.


Assuntos
Adenocarcinoma/terapia , Fatores Imunológicos/imunologia , Imunoterapia , Subpopulações de Linfócitos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/imunologia , Epigenômica , Feminino , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Neoplasias Pancreáticas
2.
Genome Res ; 33(9): 1554-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37798117

RESUMO

Animal venom systems have emerged as valuable models for investigating how novel polygenic phenotypes may arise from gene evolution by varying molecular mechanisms. However, a significant portion of venom genes produce alternative mRNA isoforms that have not been extensively characterized, hindering a comprehensive understanding of venom biology. In this study, we present a full-length isoform-level profiling workflow integrating multiple RNA sequencing technologies, allowing us to reconstruct a high-resolution transcriptome landscape of venom genes in the parasitoid wasp Pteromalus puparum Our findings demonstrate that more than half of the venom genes generate multiple isoforms within the venom gland. Through mass spectrometry analysis, we confirm that alternative splicing contributes to the diversity of venom proteins, acting as a mechanism for expanding the venom repertoire. Notably, we identified seven venom genes that exhibit distinct isoform usages between the venom gland and other tissues. Furthermore, evolutionary analyses of venom serpin3 and orcokinin further reveal that the co-option of an ancient isoform and a newly evolved isoform, respectively, contributes to venom recruitment, providing valuable insights into the genetic mechanisms driving venom evolution in parasitoid wasps. Overall, our study presents a comprehensive investigation of venom genes at the isoform level, significantly advancing our understanding of alternative isoforms in venom diversity and evolution and setting the stage for further in-depth research on venoms.


Assuntos
Venenos de Vespas , Vespas , Animais , Venenos de Vespas/genética , Vespas/genética , Isoformas de Proteínas/genética , Transcriptoma , Processamento Alternativo
3.
BMC Biol ; 22(1): 174, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148049

RESUMO

BACKGROUND: Venoms have repeatedly evolved over 100 occasions throughout the animal tree of life, making them excellent systems for exploring convergent evolutionary novelty. Growing evidence supports that venom evolution is predominantly driven by prey or host-related selection pressures, and the expression patterns of venom glands reflect adaptive evolution. However, it remains elusive whether the evolution of expression patterns in venom glands is likewise a convergent evolution driven by their prey/host species. RESULTS: We utilized parasitoid wasps that had independently adapted to Drosophila hosts as models to investigate the convergent evolution of venom gland transcriptomes in 19 hymenopteran species spanning ~ 200 million years of evolution. Comparative transcriptome analysis reveals that the global expression patterns among the venom glands of Drosophila parasitoid wasps do not achieve higher similarity compared to non-Drosophila parasitoid wasps. Further evolutionary analyses of expression patterns at the single gene, orthogroup, and Gene Ontology (GO) term levels indicate that some orthogroups/GO terms show correlation with the Drosophila parasitoid wasps. However, these groups rarely include genes highly expressed in venom glands or putative venom genes in the Drosophila parasitoid wasps. CONCLUSIONS: Our study suggests that convergent evolution may not play a predominant force shaping gene expression levels in the venom gland of the Drosophila parasitoid wasps, offering novel insights into the co-evolution between venom and prey/host.


Assuntos
Evolução Molecular , Transcriptoma , Venenos de Vespas , Vespas , Animais , Vespas/genética , Vespas/fisiologia , Venenos de Vespas/genética , Drosophila/genética , Drosophila/parasitologia , Interações Hospedeiro-Parasita/genética , Evolução Biológica
4.
BMC Genomics ; 24(1): 228, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131143

RESUMO

BACKGROUND: Single-cell RNA sequencing is a state-of-the-art technology to understand gene expression in complex tissues. With the growing amount of data being generated, the standardization and automation of data analysis are critical to generating hypotheses and discovering biological insights. RESULTS: Here, we present scRNASequest, a semi-automated single-cell RNA-seq (scRNA-seq) data analysis workflow which allows (1) preprocessing from raw UMI count data, (2) harmonization by one or multiple methods, (3) reference-dataset-based cell type label transfer and embedding projection, (4) multi-sample, multi-condition single-cell level differential gene expression analysis, and (5) seamless integration with cellxgene VIP for visualization and with CellDepot for data hosting and sharing by generating compatible h5ad files. CONCLUSIONS: We developed scRNASequest, an end-to-end pipeline for single-cell RNA-seq data analysis, visualization, and publishing. The source code under MIT open-source license is provided at https://github.com/interactivereport/scRNASequest . We also prepared a bookdown tutorial for the installation and detailed usage of the pipeline: https://interactivereport.github.io/scRNAsequest/tutorial/docs/ . Users have the option to run it on a local computer with a Linux/Unix system including MacOS, or interact with SGE/Slurm schedulers on high-performance computing (HPC) clusters.


Assuntos
Ecossistema , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Editoração
5.
Biol Reprod ; 108(3): 465-478, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36477198

RESUMO

In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.


Assuntos
Epididimo , Testículo , Masculino , Animais , Suínos/genética , Testículo/metabolismo , Epididimo/metabolismo , Porco Miniatura/genética , Porco Miniatura/metabolismo , Transcriptoma , Sêmen/metabolismo , Isoformas de Proteínas/metabolismo , Animais de Laboratório/genética , Animais de Laboratório/metabolismo
6.
Mol Biol Evol ; 38(12): 5539-5554, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34515790

RESUMO

Miniaturization has occurred in many animal lineages, including insects and vertebrates, as a widespread trend during animal evolution. Among Hymenoptera, miniaturization has taken place in some parasitoid wasp lineages independently, and may have contributed to the diversity of species. However, the genomic basis of miniaturization is little understood. Diverged approximately 200 Ma, Telenomus wasps (Platygastroidea) and Trichogramma wasps (Chalcidoidea) have both evolved to a highly reduced body size independently, representing a paradigmatic example of convergent evolution. Here, we report a high-quality chromosomal genome of Telenomus remus, a promising candidate for controlling Spodoptera frugiperda, a notorious pest that has recently caused severe crop damage. The T. remus genome (129 Mb) is characterized by a low density of repetitive sequence and a reduction of intron length, resulting in the shrinkage of genome size. We show that hundreds of genes evolved faster in two miniaturized parasitoids Trichogramma pretiosum and T. remus. Among them, 38 genes exhibit extremely accelerated evolutionary rates in these miniaturized wasps, possessing diverse functions in eye and wing development as well as cell size control. These genes also highlight potential roles in body size regulation. In sum, our analyses uncover a set of genes with accelerated evolutionary rates in Tri. pretiosum and T. remus, which might be responsible for their convergent adaptations to miniaturization, and thus expand our understanding on the evolutionary basis of miniaturization. Additionally, the genome of T. remus represents the first genome resource of superfamily Platygastroidea, and will facilitate future studies of Hymenoptera evolution and pest control.


Assuntos
Vespas , Animais , Genômica , Spodoptera , Vespas/genética
7.
Mamm Genome ; 33(2): 293-311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34724117

RESUMO

PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24-35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.


Assuntos
Epigênese Genética , Testículo , Animais , Elementos de DNA Transponíveis/genética , Masculino , Mamíferos/genética , Camundongos , RNA Interferente Pequeno/genética , Testículo/metabolismo
8.
BMC Biol ; 19(1): 145, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315471

RESUMO

BACKGROUND: Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. RESULTS: We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. CONCLUSIONS: Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control.


Assuntos
Vespas , Animais , Feminino , Masculino , Comportamento Predatório , Simbiose , Peçonhas , Vespas/genética
9.
Schizophr Res ; 272: 39-50, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182310

RESUMO

BACKGROUND AND HYPOTHESIS: Our previous studies have found that functional changes in the hippocampal circuit from dentate gyrus (DG) to cornu ammonis 3 and 1 (CA3, CA1) are highly associated with schizophrenia (SZ). However, no studies have explored the genetic expression across the three and two human hippocampal subfields (DG-CA3-CA1 and CA3-CA1) between subjects with SZ and healthy controls (CT). STUDY DESIGN: We matched cohorts between CT (n = 13) and SZ (n = 13). Among SZ, 6 subjects were on antipsychotics (AP) while 7 were off AP. We combined RNA-seq data from all three and two hippocampal subfields and performed differentially expressed gene analyses across DG-CA3-CA1 and CA3-CA1 affected by either SZ or AP. STUDY RESULTS: We found that differentially expressed genes (DEGs) from effects of SZ and AP across DG-CA3-CA1 and CA3-CA1 were highly associated with gene ontology terms related to hormonal and immune signaling, cellular mitosis and apoptosis, ion and amino acid transports, and protein modification and degradation. Additionally, we found that multiple genes related to solute-carrier family and immune signaling were significantly upregulated across DG-CA3-CA1 and CA3-CA1 in patients with SZ relative to CT, and AP consistently and robustly repressed the expression of these upregulated genes in the DG-CA3-CA1 and CA3-CA1 from subjects with SZ. CONCLUSIONS: Together, these data suggest that the upregulated solute-carrier family genes in the hippocampus might have important roles in the pathophysiology of SZ, and that AP may reduce the symptoms of psychosis in SZ via rescuing the solute-carrier gene expression.


Assuntos
Antipsicóticos , Hipocampo , Esquizofrenia , Regulação para Cima , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Antipsicóticos/farmacologia , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Adulto , Feminino , Regulação para Cima/efeitos dos fármacos , Pessoa de Meia-Idade
11.
Nat Commun ; 14(1): 957, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810573

RESUMO

Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.


Assuntos
Núcleo Celular , Histonas , Animais , Masculino , Histonas/metabolismo , Núcleo Celular/metabolismo , Desenvolvimento Embrionário/genética , Zigoto/metabolismo , Estabilidade de RNA , RNA/metabolismo , Mamíferos/genética
12.
J Mol Biol ; 435(14): 168017, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36806691

RESUMO

We present RNASequest, a customizable RNA sequencing (RNAseq) analysis, app management, and result publishing framework. Its three-in-one RNAseq data analysis ecosystem consists of (1) a reproducible, configurable expression analysis (EA) module, (2) multi-faceted result presentation in R Shiny, a Bookdown document and an online slide deck, and (3) a centralized data management system. In principle, following up our well-received omics data visualization tool Quickomics, RNASequest automates the differential gene expression analysis step, eases statistical model design by built-in covariates testing module, and further provides a web-based tool, ShinyOne, to manage apps powered by Quickomics and reports generated by running the pipeline on multiple projects in one place. Researchers can experience the functionalities by exploring demo data sets hosted at http://shinyone.bxgenomics.com or following the tutorial, https://interactivereport.github.io/RNASequest/tutorial/docs/introduction.html to set up the framework locally to process private RNAseq datasets. The source code released under MIT open-source license is provided at https://github.com/interactivereport/RNASequest.


Assuntos
RNA-Seq , Análise de Sequência de RNA , Software
13.
Sci Data ; 10(1): 678, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798273

RESUMO

The production of semen in boars involves multiple reproductive glands, including the testis (Tes), epididymis (Epi), vesicular gland (VG), prostate gland (PG), and bulbourethral gland (BG). However, previous studies on boar reproduction primarily focused on the testis, with little attention paid to the other glands. Here, we integrated single-molecule long-read sequencing with short-read sequencing to characterize the RNA landscape from five glands of Banna mini-pig inbred line (BMI) and Diannan small-ear pigs (DSE). We identified 110,996 full-length isoforms from 22,298 genes, and classified the alternative splicing (AS) events in these five glands. Transcriptome-wide variation analysis indicated that the number of single nucleotide polymorphisms (SNPs) in five tissues of BMI was significantly lower than that in the non-inbred pig, DSE, revealing the effect of inbreeding on BMI. Additionally, we performed small-RNA sequencing and identified 299 novel miRNAs across all glands. Overall, our findings provide a comprehensive overview of the RNA landscape within these five glands, paving the path for future investigations on reproductive biology and the impact of inbreeding on pig transcriptome.


Assuntos
Processamento Alternativo , MicroRNAs , Suínos , Testículo , Animais , Masculino , Genitália , Análise de Sequência de RNA , Suínos/genética , Porco Miniatura , Testículo/metabolismo , Transcriptoma , Polimorfismo de Nucleotídeo Único
14.
Front Cell Dev Biol ; 11: 1166517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325562

RESUMO

The linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis. In insects, the current understanding of germline-specific H1 variants comes mainly from the studies in Drosophila melanogaster, and the information on this set of genes in other non-model insects remains largely unknown. Here, we identify two H1 variants (PpH1V1 and PpH1V2) that are specifically predominantly expressed in the testis of the parasitoid wasp Pteromalus puparum. Evolutionary analyses suggest that these H1 variant genes evolve rapidly, and are generally maintained as a single copy in Hymenoptera. Disruption of PpH1V1 function in the late larval stage male by RNA interference experiments has no phenotype on spermatogenesis in the pupal testis, but results in abnormal chromatin structure and low sperm fertility in the adult seminal vesicle. In addition, PpH1V2 knockdown has no detectable effect on spermatogenesis or male fertility. Collectively, our discovery indicates distinct functions of male germline-enriched H1 variants between parasitoid wasp Pteromalus and Drosophila, providing new insights into the role of insect H1 variants in gametogenesis. This study also highlights the functional complexity of germline-specific H1s in animals.

15.
Nat Commun ; 14(1): 812, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781861

RESUMO

Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.


Assuntos
Galinhas , Células Germinativas , Humanos , Masculino , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Galinhas/genética , Galinhas/metabolismo , Células Germinativas/metabolismo , Testículo/metabolismo , Elementos de DNA Transponíveis/genética , RNA de Interação com Piwi , Mamíferos/genética
16.
Comput Struct Biotechnol J ; 20: 1277-1285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356547

RESUMO

With advances in NGS technologies, transcriptional profiling of human tissue across many diseases is becoming more routine, leading to the generation of petabytes of data deposited in public repositories. There is a need for bench scientists with little computational expertise to be able to access and mine this data to understand disease pathology, identify robust biomarkers of disease and the effect of interventions (in vivo or in vitro). To this end we release an open source analytics and visualization platform for expression data called OmicsView, http://omicsview.org. This platform comes preloaded with 1000 s of samples across many disease areas and normal tissue, including the GTEx database, all processed with a harmonized pipeline. We demonstrate the power and ease-of-use of the platform by means of a Crohn's disease data mining exercise where we can quickly uncover disease pathology and identify strong biomarkers of disease and response to treatment.

17.
Nat Commun ; 13(1): 6417, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302851

RESUMO

Parasitoid wasps are rapidly developing as a model for evolutionary biology. Here we present chromosomal genomes of two Anastatus wasps, A. japonicus and A. fulloi, and leverage these genomes to study two fundamental questions-genome size evolution and venom evolution. Anastatus shows a much larger genome than is known among other wasps, with unexpectedly recent bursts of LTR retrotransposons. Importantly, several genomic innovations, including Piwi gene family expansion, ubiquitous Piwi expression profiles, as well as transposable element-piRNA coevolution, have likely emerged for transposable element silencing to maintain genomic stability. Additionally, we show that the co-option evolution arose by expression shifts in the venom gland plays a dominant role in venom turnover. We also highlight the potential importance of non-venom genes that are coexpressed with venom genes during venom evolution. Our findings greatly advance the current understanding of genome size evolution and venom evolution, and these genomic resources will facilitate comparative genomics studies of insects in the future.


Assuntos
Vespas , Animais , Vespas/genética , Peçonhas , Elementos de DNA Transponíveis/genética , Genômica , Instabilidade Genômica/genética
18.
Poult Sci ; 100(9): 101321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34298384

RESUMO

Deep sequencing of RNAs has greatly aided the study of the transcriptome, enabling comprehensive gene expression profiling and the identification of novel transcripts. While messenger RNAs (mRNAs) are of the greatest interest in gene expression studies as they encode for proteins, mRNAs make up only 3 to 5% of total RNAs, with the majority comprising ribosomal RNAs (rRNAs). Therefore, applications of deep sequencing to RNA face the challenge of how to efficiently enrich mRNA species prior to library construction. Traditional methods extract mRNAs using oligo-dT primers targeting the poly-A tail on mRNAs; however, this approach is not comprehensive as it does not capture mRNAs lacking the poly-A tail or other long non-coding RNAs that we may be interested in. Alternative mRNA enrichment methods deplete rRNAs, but such approaches require species-specific probes and the commercially available kits are costly and have only been developed for a limited number of model organisms. Here, we describe a quick, cost-effective method for depleting rRNAs using custom-designed oligos, using chickens as an example species for probe design. With this optimized protocol, we have not only removed the rRNAs from total RNAs for RNA-seq library construction but also depleted rRNA fragments from ribosome-protected fragments for ribosome profiling. Currently, this is the only rRNA depletion-based method for avian species; this method thus provides a valuable resource for both the scientific community and the poultry industry.


Assuntos
Galinhas , RNA Ribossômico , Animais , Galinhas/genética , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , RNA , Ribossomos , Análise de Sequência de RNA/veterinária
19.
Nat Commun ; 12(1): 1361, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649327

RESUMO

Sperm contributes diverse RNAs to the zygote. While sperm small RNAs have been shown to impact offspring phenotypes, our knowledge of the sperm transcriptome, especially the composition of long RNAs, has been limited by the lack of sensitive, high-throughput experimental techniques that can distinguish intact RNAs from fragmented RNAs, known to abound in sperm. Here, we integrate single-molecule long-read sequencing with short-read sequencing to detect sperm intact RNAs (spiRNAs). We identify 3440 spiRNA species in mice and 4100 in humans. The spiRNA profile consists of both mRNAs and long non-coding RNAs, is evolutionarily conserved between mice and humans, and displays an enrichment in mRNAs encoding for ribosome. In sum, we characterize the landscape of intact long RNAs in sperm, paving the way for future studies on their biogenesis and functions. Our experimental and bioinformatics approaches can be applied to other tissues and organisms to detect intact transcripts.


Assuntos
Sequência Conservada/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Imagem Individual de Molécula , Espermatozoides/metabolismo , Animais , Evolução Molecular , Ontologia Genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Testículo/metabolismo , Transcriptoma/genética
20.
Nat Commun ; 12(1): 5970, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645830

RESUMO

PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.


Assuntos
Regiões 3' não Traduzidas , Fertilidade/genética , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , Ribossomos/genética , Espermatogênese/genética , Animais , Sequência de Bases , Galinhas , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estágio Paquíteno , RNA Interferente Pequeno/metabolismo , Ribossomos/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA