Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
FASEB J ; 35(11): e21976, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34618982

RESUMO

Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides. OM-3CA reduced plasma concentrations of proinflammatory PGE2 , as well as PGE1 , PGD1 and thromboxane B2 but increased prostacyclin, and eicosapentaenoic acid- and docosahexaenoic acid-derived lipids of lipoxygenase and cytochrome P450 monooxygenase (CYP) (e.g., 17-HDHA, 18-HEPE, 19,20-DiHDPA). Fenofibrate reduced plasma concentrations of vasoactive CYP-derived eicosanoids (DHETs). Although OM-3CA increased plasma levels of the NAE docosahexaenoyl ethanolamine and docosapentaenoyl ethanolamine, and fenofibrate increased palmitoleoyl ethanolamine, the effect of both treatments may have been masked by the placebo (olive oil). Fenofibrate was more efficacious than OM-3CA in significantly reducing plasma ceramides, pro-inflammatory lipids associated with CV disease risk. Neither treatment affected putative lipid species associated with NAFLD. Our results show that OM-3CA and fenofibrate differentially modulate the plasma mediator lipidome, with OM-3CA promoting the formation of lipid mediators with potential effects on chronic inflammation, while fenofibrate mainly reducing ceramides. These findings suggest that both treatments could ameliorate chronic inflammation with possible impact on disease outcomes, independent of triglyceride reduction.


Assuntos
Ácidos Carboxílicos , Ácidos Graxos Ômega-3 , Fenofibrato , Hipertrigliceridemia/tratamento farmacológico , Hipolipemiantes , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adulto , Idoso , Ácidos Carboxílicos/administração & dosagem , Ácidos Carboxílicos/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Feminino , Fenofibrato/administração & dosagem , Fenofibrato/farmacologia , Humanos , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade
2.
J Clin Lipidol ; 12(6): 1390-1403.e4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197273

RESUMO

BACKGROUND: Treatment with omega-3 fatty acids and fenofibrates reduces serum triglyceride levels, but few studies have compared the effect of these agents on liver fat. OBJECTIVE: The aim of the EFFECT I trial (NCT02354976) was to determine the effects of free omega-3 carboxylic acids (OM-3CA) and fenofibrate on liver fat in overweight or obese individuals with non-alcoholic fatty liver disease and hypertriglyceridemia. METHODS: Seventy-eight patients were randomized to receive oral doses of 4 g OM-3CA (n = 25), 200 mg fenofibrate (n = 27), or placebo (n = 26) for 12 weeks in a double-blind, parallel-group study. Liver proton density fat fraction (PDFF) and volume, pancreas volume, and adipose tissue volumes were assessed by magnetic resonance imaging. RESULTS: Changes in liver PDFF at 12 weeks were not significantly different across treatment groups (relative changes from baseline: placebo, +4%; OM-3CA, -2%; and fenofibrate, +17%). The common PNPLA3 genetic polymorphism (I148M) did not significantly influence the effects of OM-3CA or fenofibrate on liver PDFF. Fenofibrate treatment significantly increased liver and pancreas volumes vs placebo treatment, and the changes in liver and pancreas volumes were positively correlated (rho 0.45, P = .02). Total liver fat volume increased significantly in patients using fenofibrate vs OM-3CA (+23% vs -3%, P = .04). Compared with OM-3CA, fenofibrate increased total liver fat and liver volume. Serum triglycerides decreased with OM-3CA (-26%, P = .02) and fenofibrate (-38%, P < .001) vs placebo. In contrast to OM-3CA, fenofibrate reduced plasma docosahexaenoic acid levels and increased plasma acetylcarnitine and butyrylcarnitine levels, estimated delta-9 desaturase activity and the concentration of urine F2-isoprostanes. CONCLUSIONS: OM-3CA and fenofibrate reduced serum triglycerides but did not reduce liver fat. Fenofibrate increased total liver volume and total liver fat volume vs OM-3CA, indicating a complex effect of fenofibrate on human hepatic lipid metabolism.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Ácidos Carboxílicos/química , Ácidos Graxos Ômega-3/uso terapêutico , Fenofibrato/uso terapêutico , Hipertrigliceridemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adulto , Idoso , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Método Duplo-Cego , Ácidos Graxos Ômega-3/química , Feminino , Fenofibrato/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/patologia , Lipoproteínas/sangue , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Placebos , Resultado do Tratamento
3.
J Am Coll Cardiol ; 70(9): 1162-1170, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28838366

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH), a rare genetic disorder, is characterized by extremely elevated levels of low-density lipoprotein cholesterol (LDL-C) and accelerated atherosclerotic cardiovascular disease. Statin treatment starts at diagnosis, but no statin has been formally evaluated in, or approved for, HoFH children. OBJECTIVES: The authors sought to assess the LDL-C efficacy of rosuvastatin versus placebo in HoFH children, and the relationship with underlying genetic mutations. METHODS: This was a randomized, double-blind, 12-week, crossover study of rosuvastatin 20 mg versus placebo, followed by 12 weeks of open-label rosuvastatin. Patients discontinued all lipid-lowering treatment except ezetimibe and/or apheresis. Clinical and laboratory assessments were performed every 6 weeks. The relationship between LDL-C response and genetic mutations was assessed by adding children and adults from a prior HoFH rosuvastatin trial. RESULTS: Twenty patients were screened, 14 randomized, and 13 completed the study. The mean age was 10.9 years; 8 patients were on ezetimibe and 7 on apheresis. Mean LDL-C was 481 mg/dl (range: 229 to 742 mg/dl) on placebo and 396 mg/dl (range: 130 to 700 mg/dl) on rosuvastatin, producing a mean 85.4 mg/dl (22.3%) difference (p = 0.005). Efficacy was similar regardless of age or use of ezetimibe or apheresis, and was maintained for 12 weeks. Adverse events were few and not serious. Patients with 2 defective versus 2 negative LDL receptor mutations had mean LDL-C reductions of 23.5% (p = 0.0044) and 14% (p = 0.038), respectively. CONCLUSIONS: This first-ever pediatric HoFH statin trial demonstrated safe and effective LDL-C reduction with rosuvastatin 20 mg alone or added to ezetimibe and/or apheresis. The LDL-C response in children and adults was related to underlying genetic mutations. (A Study to Evaluate the Efficacy and Safety of Rosuvastatin in Children and Adolescents With Homozygous Familial Hypercholesterolemia [HYDRA]; NCT02226198).


Assuntos
LDL-Colesterol/genética , DNA/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Mutação , Rosuvastatina Cálcica/administração & dosagem , Adolescente , Anticolesterolemiantes/administração & dosagem , Criança , LDL-Colesterol/sangue , Estudos Cross-Over , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Homozigoto , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA