Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 515(7527): 431-435, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25383517

RESUMO

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Assuntos
Isquemia/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Ácido Succínico/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Fumaratos/metabolismo , Isquemia/enzimologia , Malatos/metabolismo , Masculino , Metabolômica , Camundongos , Mitocôndrias/enzimologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Traumatismo por Reperfusão/enzimologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/metabolismo , Succinato Desidrogenase/metabolismo
2.
Ann N Y Acad Sci ; 1350: 107-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26375864

RESUMO

Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.


Assuntos
Sinalização do Cálcio , Morte Celular , Metabolismo Energético , Mitocôndrias/metabolismo , Modelos Biológicos , Animais , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Necrose , Permeabilidade , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA