Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322712

RESUMO

Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1-9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleo de Semente do Linho/química , Antineoplásicos Fitogênicos/isolamento & purificação , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Polimerização/efeitos dos fármacos , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores
2.
Mediators Inflamm ; 2015: 904142, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922567

RESUMO

Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E2 (PGE2), downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-α, and cyclooxygenase- (COX-) 2 in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced NF-κB (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found that Src, Syk, IRAK1, and IRAK4 responsible for NF-κB and AP-1 activation were identified as the direct molecular targets of KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-κB and AP-1.


Assuntos
Anti-Inflamatórios/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quempferóis/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Núcleo Celular/metabolismo , Fibronectinas/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Quinase Syk , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células U937
3.
Phytother Res ; 29(3): 381-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25414115

RESUMO

Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti-inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl-ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl-ME dose-dependently diminished the secretion of NO and PGE2 from LPS-stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH-treated mice were also attenuated after Gl-ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, nuclear translocation of p65/nuclear factor (NF)-κB, phosphorylation of p65-activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH-induced gastric symptoms. Therefore, these results suggest that Gl-ME might be useful as an herbal anti-inflammatory medicine through the inhibition of Src and NF-κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti-inflammatory preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhamnaceae/química , Estilbenos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Gastrite/tratamento farmacológico , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol , Tailândia
4.
Korean J Physiol Pharmacol ; 19(5): 441-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330757

RESUMO

Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-ß (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation.

5.
Korean J Physiol Pharmacol ; 19(4): 365-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26170741

RESUMO

Aripiprazole (ARI) is a commonly prescribed medication used to treat schizophrenia and bipolar disorder. To date, there have been no studies regarding the molecular pathological and immunotoxicological profiling of aripiprazole. Thus, in the present study, we prepared two different formulas of aripiprazole [Free base crystal of aripiprazole (ARPGCB) and cocrystal of aripiprazole (GCB3004)], and explored their effects on the patterns of survival and apoptosis-regulatory proteins under acute toxicity and cytotoxicity test conditions. Furthermore, we also evaluated the modulatory activity of the different formulations on the immunological responses in macrophages primed by various stimulators such as lipopolysaccharide (LPS), pam3CSK, and poly(I:C) via toll-like receptor 4 (TLR4), TLR2, and TLR3 pathways, respectively. In liver, both ARPGCB and GCB3004 produced similar toxicity profiles. In particular, these two formulas exhibited similar phospho-protein profiling of p65/nuclear factor (NF)-κB, c-Jun/activator protein (AP)-1, ERK, JNK, p38, caspase 3, and bcl-2 in brain. In contrast, the patterns of these phospho-proteins were variable in other tissues. Moreover, these two formulas did not exhibit any cytotoxicity in C6 glioma cells. Finally, the two formulations at available in vivo concentrations did not block nitric oxide (NO) production from activated macrophage-like RAW264.7 cells stimulated with LPS, pam3CSK, or poly(I:C), nor did they alter the morphological changes of the activated macrophages. Taken together, our present work, as a comparative study of two different formulas of aripiprazole, suggests that these two formulas can be used to achieve similar functional activation of brain proteins related to cell survival and apoptosis and immunotoxicological activities of macrophages.

6.
Mediators Inflamm ; 2014: 658351, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477714

RESUMO

21-O-Angeloyltheasapogenol E3 (ATS-E3) is a triterpenoid saponin recently isolated from the seeds of the tea tree Camellia sinensis (L.) O. Kuntze. ATS-E3 has several beneficial properties including anti-inflammatory, antidiabetic, antiatherosclerotic, and anticancer effects. Unlike other phenolic compounds isolated from tea plants, there are no studies reporting the pharmacological action of ATS-E3. In this study, we therefore aimed to explore the cellular and molecular inhibitory activities of ATS-E3 in macrophage-mediated inflammatory responses. ATS-E3 remarkably diminished cellular responses of macrophages such as FITC-dextran-induced phagocytic uptake, sodium nitroprusside- (SNP-) induced radical generation, and LPS-induced nitric oxide (NO) production. Analysis of its molecular activity showed that this compound significantly suppressed the expression of inducible NO synthase (iNOS), nuclear translocation of nuclear factor- (NF-) κB subunits (p50 and p65), phosphorylation of inhibitor of κB kinase (IKK), and the enzyme activity of AKT1. Taken together, the novel triterpenoid saponin compound ATS-E3 contributes to the beneficial effects of tea plants by exerting anti-inflammatory and antioxidative activities in an AKT/IKK/NF-κB-dependent manner.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Camellia sinensis , Linhagem Celular , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Saponinas/isolamento & purificação , Sementes , Transdução de Sinais/efeitos dos fármacos , Triterpenos/isolamento & purificação
7.
Phytomedicine ; 109: 154573, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610128

RESUMO

BACKGROUND: Beauvericin (BEA) is a depsipeptide with antimicrobial, anti-inflammatory, and anti-cancer activities isolated from Beauveria bassiana. However, little is understood on its anti-cancer activities and mechanism. PURPOSE: Aim of this study was to explore the anti-cancer activity of BEA and its underlying molecular mechanism to provide a theoretical basis for its role as a candidate natural drug in cancer diseases. STUDY DESIGN: Various cancer cells such as C6 glioma, U251, MDA-MB-231, HeLa, HCT-15, LoVo cells, and HEK293T cells were used to the anti-cancer activity of BEA. METHODS: To evaluate the anti-cancer activity of BEA, cell viability test (MTT assay), morphological change check, confocal microscopy, actin polymerization assay, flow cytometry, and Western blotting analysis. To check the target enzyme of BEA, overexpression and site-directed mutagenesis was employed. RESULTS: BEA inhibited the viability of cancer cells including C6, MDA-MB-231, HeLa, HCT-15, LoVo, and U251 cells. Treatment of BEA in C6 glioma cells induced cell membrane blebbing and apoptosis. Caspase-3 and -9 were dose-dependently activated by BEA, and the mRNA expression of Bcl-2 was inhibited by BEA. According to confocal microscopy, actin polymerization and actin-actin interaction were interrupted by BEA in C6 cells. BEA regulated the apoptosis of C6 cells depending on the protein phosphorylation of Src and Signal transducer and activator of transcription (STAT3). Moreover, c-terminal amino acids in Src directly interacted with BEA in C6 cells, and the binding of Src and BEA suppressed the kinase activity of Src. CONCLUSIONS: These results suggest that BEA may be a critical candidate or substitute drug for cancer treatment via suppression of the Src/STAT3 pathway.


Assuntos
Actinas , Antineoplásicos , Depsipeptídeos , Neoplasias , Humanos , Actinas/metabolismo , Apoptose , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Células HEK293 , Fosforilação , Polimerização , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico
8.
Biomolecules ; 10(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512905

RESUMO

Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Linho/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
9.
J Ginseng Res ; 41(3): 386-391, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701882

RESUMO

BACKGROUND: Korean Red Ginseng (KRG) is an ethnopharmacological plant that is traditionally used to improve the body's immune functions and ameliorate the symptoms of various diseases. However, the antitumorigenic effects of KRG and its underlying molecular and cellular mechanisms are not fully understood in terms of its individual components. In this study, in vitro and in vivo antitumorigenic activities of KRG were explored in water extract (WE), saponin fraction (SF), and nonsaponin fraction (NSF). METHODS: In vitro antitumorigenic activities of WE, SF, and NSF of KRG were investigated in the C6 glioma cell line using cytotoxicity, migration, and proliferation assays. The underlying molecular mechanisms of KRG fractions were determined by examining the signaling cascades of apoptotic cell death by semiquantitative reverse transcriptase polymerase chain reaction and Western blot analysis. The in vivo antitumorigenic activities of WE, SF, and NSF were investigated in a xenograft mouse model. RESULTS: SF induced apoptotic death of C6 glioma cells and suppressed migration and proliferation of C6 glioma cells, whereas WE and NSF neither induced apoptosis nor suppressed migration of C6 glioma cells. SF downregulated the expression of the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2) and upregulated the expression of the pro-apoptotic gene Bcl-2-associated X protein (BAX) in C6 glioma cells but had no effect on the expression of the p53 tumor-suppressor gene. Moreover, SF treatment resulted in activation of caspase-3 as evidenced by increased levels of cleaved caspase-3. Finally, WE, SF, and NSF exhibited in vivo antitumorigenic activities in the xenograft mouse model by suppressing the growth of grafted CT-26 carcinoma cells without decreasing the animal body weight. CONCLUSION: These results suggest that WE, SF, and NSF of KRG are able to suppress tumor growth via different molecular and cellular mechanisms, including induction of apoptosis and activation of immune cells.

10.
J Ginseng Res ; 40(4): 437-444, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27746698

RESUMO

BACKGROUND: Although Korean Red Ginseng (KRG) has been traditionally used for a long time, its anti-inflammatory role and underlying molecular and cellular mechanisms have been poorly understood. In this study, the anti-inflammatory roles of KRG-derived components, namely, water extract (KRG-WE), saponin fraction (KRG-SF), and nonsaponin fraction (KRG-NSF), were investigated. METHODS: To check saponin levels in the test fractions, KRG-WE, KRG-NSF, and KRG-SF were analyzed using high-performance liquid chromatography. The anti-inflammatory roles and underlying cellular and molecular mechanisms of these components were investigated using a macrophage-like cell line (RAW264.7 cells) and an acute gastritis model in mice. RESULTS: Of the tested fractions, KGR-SF (but not KRG-NSF and KRG-WE) markedly inhibited the viability of RAW264.7 cells, and splenocytes at more than 500 µg/mL significantly suppressed NO production at 100 µg/mL, diminished mRNA expression of inflammatory genes such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, and interferon-ß at 200 µg/mL, and completely blocked phagocytic uptake by RAW264.7 cells. All three fractions suppressed luciferase activity triggered by interferon regulatory factor 3 (IRF3), but not that triggered by activator protein-1 and nuclear factor-kappa B. Phospho-IRF3 and phospho-TBK1 were simultaneously decreased in KRG-SF. Interestingly, all these fractions, when orally administered, clearly ameliorated the symptoms of gastric ulcer in HCl/ethanol-induced gastritis mice. CONCLUSION: These results suggest that KRG-WE, KRG-NSF, and KRG-SF might have anti-inflammatory properties, mostly because of the suppression of the IRF3 pathway.

11.
Biomol Ther (Seoul) ; 24(4): 402-9, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068261

RESUMO

It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells.

12.
J Ginseng Res ; 39(2): 155-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26045689

RESUMO

BACKGROUND: Korean ginseng is an ethnopharmacologically valuable herbal plant with various biological properties including anticancer, antiatherosclerosis, antidiabetic, and anti-inflammatory activities. Since there is currently no drug or therapeutic remedy derived from Korean ginseng, we developed a ginsenoside-enriched fraction (AP-SF) for prevention of various inflammatory symptoms. METHODS: The anti-inflammatory efficacy of AP-SF was tested under in vitro inflammatory conditions including nitric oxide (NO) production and inflammatory gene expression. The molecular events of inflammatory responses were explored by immunoblot analysis. RESULTS: AP-SF led to a significant suppression of NO production compared with a conventional Korean ginseng saponin fraction, induced by both lipopolysaccharide and zymosan A. Interestingly, AP-SF strongly downregulated the mRNA levels of genes for inducible NO synthase, tumor necrosis factor-α, and cyclooxygenase) without affecting cell viability. In agreement with these observations, AP-SF blocked the nuclear translocation of c-Jun at 2 h and also reduced phosphorylation of p38, c-Jun N-terminal kinase, and TAK-1, all of which are important for c-Jun translocation. CONCLUSION: Our results suggest that AP-SF inhibits activation of c-Jun-dependent inflammatory events. Thus, AP-SF may be useful as a novel anti-inflammatory remedy.

13.
J Ginseng Res ; 39(1): 61-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25535478

RESUMO

BACKGROUND: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. METHODS: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. RESULTS: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-α, and prostaglandin E2], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-α, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. CONCLUSION: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

14.
Expert Opin Ther Pat ; 25(5): 513-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25684022

RESUMO

INTRODUCTION: 3-Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of the AGC protein kinase family and is a critical activator of multiple pro-survival and oncogenic protein kinases, for which it has garnered considerable interest as an oncology drug target. AREAS COVERED: This manuscript reviews small molecule patent literature disclosures between October 2011 and September 2014 for both PDK1 activators and inhibitors and restates the selective patents published before September 2011. PDK1 modulators are organized according to pharmaceutical company and chemical structural class. EXPERT OPINION: Many academic institutions and pharmaceutical companies continue to research into the development of small molecules that can function as PDK1 inhibitors or modulators. To date, >50 patent publications on PDK1 disruptors and modulators have been published since the protein was first discovered in 1998. Most of these molecules act as ATP mimetics, forming similar hydrogen bonding patterns to PDK1 as ATP and functioning as hydrophobic pharmacophores. To achieve selectivity in PDK1 inhibition, the discovery of binding pockets structurally distinctive from the ATP site is a challenging but promising strategy.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/efeitos dos fármacos , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Ligação de Hidrogênio , Patentes como Assunto
15.
Artigo em Inglês | MEDLINE | ID: mdl-25918546

RESUMO

The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.

16.
Mol Nutr Food Res ; 59(7): 1400-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917334

RESUMO

Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing.


Assuntos
Dor Abdominal/tratamento farmacológico , Gastrite/tratamento farmacológico , Quempferóis/farmacologia , Nociceptividade/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Ácido Acético/toxicidade , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/efeitos adversos , Ceruletídeo/efeitos adversos , Modelos Animais de Doenças , Gastrite/induzido quimicamente , Gastrite/patologia , Camundongos , Pancreatite/induzido quimicamente
17.
J Ethnopharmacol ; 168: 217-28, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839115

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS: Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION: Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Phyllanthus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Acético , Animais , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Etanol , Gastrite/induzido quimicamente , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lipopolissacarídeos , Metanol/química , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Solventes/química , Quinase Syk , Células U937 , Quinases da Família src/antagonistas & inibidores
18.
Korean J Food Sci Anim Resour ; 34(5): 570-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26761489

RESUMO

This study was conducted to compare the effects of two forms of radiation (electron and X-ray; generated by an electron beam accelerator) on the conformation and antigenic properties of hen's egg albumin, ovalbumin (OVA), which was used as a model protein. OVA solutions (2.0 mg/mL) were individually irradiated by electron beam or X-ray at the absorbed doses of 0 (control), 2, 4, 6, 8, and 10 kGy. No differences between the two forms of radiation on the structural properties of OVA were shown by spectrometric and electrophoretic analyses. The turbidity of OVA solution increased and the main OVA bands on polyacrylamide gels disappeared after irradiation, regardless of the radiation source. In competitive indirect enzyme-linked immunosorbent assay, OVA samples irradiated by electron beam or X-ray showed different immunological responses in reactions with monoclonal and polyclonal antibodies (immunoglobulin G) produced against non-irradiated OVA. The results indicate that electron beam irradiation and X-ray irradiation produced different patterns of structural changes to the OVA molecule.

19.
J Ethnopharmacol ; 155(1): 185-93, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24866386

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Codariocalyx motorius (Houtt.) H. Ohashi (Fabaceae) is one of several ethnopharmacologically valuable South Asian species prescribed as an herbal medicine for various inflammatory diseases. Due to the lack of systematic studies on this plant, we aimed to explore the inhibitory activity of Codariocalyx motorius toward inflammatory responses using its ethanolic extract (Cm-EE). MATERIALS AND METHODS: Lipopolysaccharide (LPS)-treated macrophages and a HCl/EtOH-induced gastritis model were used for evaluation of the anti-inflammatory activity of Cm-EE. HPLC and spectroscopic analysis were employed to identify potential active components. Mechanistic approaches to determine target enzymes included kinase assays, reporter gene assays, and overexpression of target enzymes. RESULTS: Cm-EE strongly suppressed nitric oxide (NO) and prostaglandin E2 (PGE2) release. Cm-EE-mediated inhibition was observed at the transcriptional level in the form of suppression of NF-κB (p65) translocation and activation. This extract also lowered the levels of phosphorylation of Src and Syk, their kinase activity, and their formation of signalling complexes by binding to the downstream enzyme p85/PI3K. In accord with these findings, the phosphorylation of p85 induced by overexpression of Src or Syk was also diminished by Cm-EE. Orally administered Cm-EE clearly inhibited gastritic ulcer formation and the phosphorylation of IκBα and Src in HCl/EtOH-treated stomachs of mice. By phytochemical analysis, luteolin and its glycoside, apigenin-7-O-glucuronide, and scutellarein-6-O-glucuronide were identified as major components of Cm-EE. Among these, it was found that luteolin was able to strongly suppress NO and PGE2 production under the same conditions. CONCLUSION: Syk/Src-targeted inhibition of NF-κB by Cm-EE could be a major anti-inflammatory mechanism contributing to its ethno pharmacological role as an anti-inflammatory herbal medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Fabaceae/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Dinoprostona/metabolismo , Modelos Animais de Doenças , Etanol/química , Gastrite/tratamento farmacológico , Gastrite/patologia , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteínas Tirosina Quinases/metabolismo , Quinase Syk , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA