Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885467

RESUMO

The strain rate-dependent behavior of a unidirectional non-crimp fabric (UD-NCF) carbon fiber/snap-cure epoxy composite loaded along the transverse direction under quasi-static and dynamic conditions was characterized. Transverse tension and compression tests at quasi-static and intermediate strain rates were performed using hydraulic testing machines, while a split Hopkinson pressure bar (SHPB) apparatus was used for transverse compression tests at high strain rates. A pulse shaper was used on the SHPB apparatus to ensure dynamic equilibrium was achieved and that the test specimens deformed homogenously with a nearly constant strain rate. The transverse tensile strength at a strain rate of 16 s-1 increased by 16% when compared to that at quasi-static strain rates, while distinct localized fracture surface morphology was observed for specimens tested at different strain rates. The transverse compressive yield stress and strength at a strain rate of 325 s-1 increased by 94% and 96%, respectively, when compared to those at quasi-static strain rates. The initial fracture plane orientation for the transverse compression tests was captured with high-speed cameras and found to increase with increasing strain rate. The study provides an important data set for the strain rate-dependent response of a UD-NCF composite material, while the qualitative fracture surface observations provide a deeper understanding of the failure characteristics.

2.
Macromolecules ; 51(15): 5788-5797, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30258253

RESUMO

While the formation of (tri)block copolymer hydrogels has been extensively investigated, such studies mostly focused on equilibrium self-assembling whereas the use of preformed structures as building blocks such as out of equilibrium, quenched, nanofibrillar micelles is still a challenge. Here, we demonstrate that quenched, ultralong polystyrene-b-poly(ethylene oxide) (PS-b-PEO) micelles can be used as robust precursors of hydrogels. Two cross-linking strategies, (i) thermal fusion of micellar cores and (ii) chemical cross-linking of preformed micellar coronas were studied. The gelation process and the structure of the micellar networks were investigated by in situ rheological measurements, confocal microscopy and transmission electron microscopy. Direct observation of core fusion of preformed quenched micelles is provided validating this method as a robust gelation route. Using time sweep rheological experiments, it was found for both cross-linking methods that these 3D "mikado" gels are formed in three different stages, containing (1) initiation, (2) transition (growth), and (3) stabilization regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA