Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 54: 116580, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953341

RESUMO

Staphylococcus aureus is an emerging human pathogen that has become difficult to treat due to its high resistance against wide range of drugs. Emergence of drug resistant isolates has further convoluted the treatment process. Among different resistance mechanisms, efflux pump proteins play a central role and has made itself a direct approach for therapeutic exploration. To demarcate the role of dihydroquinazoline analogues as NorA efflux pump inhibitor in S. aureus1199B (NorA over producing) strain total seventeen analogues were synthesized and tested for their modulatory effects on norfloxacin and Etbr resistance. Further accumulation assays, bacterial time kill kinetics, cytotoxicity assay were also carried out. The intracellular killing ability of analogues, as EPI was determined using THP-1 monocytes. The binding interaction of analogues with NorA was also predicted. Dihydroquinazoline analogues notably reduced the MIC of norfloxacin and Etbr in S. aureus1199B. In addition to their very low toxicity, they showed high Etbr and norfloxacin accumulation respectively. Further effective over time log reduction in bacterial kill kinetics in presence of these analogues confirmed their role as NorA efflux pump inhibitor. FESEM analysis clearly depicted their effect on the cell surface morphology owing to its lyses. The most significant finding of this study was the ability of analogues to significantly reduce the intracellular S. aureus1199B in human THP-1 monocytes in presence of norfloxacin. Our study has shown for the first time the possibility of developing the dihydroquinazoline analogues as NorA efflux pump inhibitors for S. aureus and control its infection.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinazolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quinazolinas/síntese química , Quinazolinas/química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Células THP-1
2.
Org Biomol Chem ; 18(11): 2058-2062, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32154551

RESUMO

A three-component domino Knoevenagel-hetero-Diels-Alder (DKHDA) reaction between 1,3-dicarbonyl, aldehydes/ketones, and alkenes/alkynes leading to the divergent synthesis of chromenones, dihydrochromenones, and spirocyclic chromenones is reported. The reaction was carried out under solvent-free conditions using a magnetically separable silica (Fe3O4@SiO2) catalyst. While two component DKHDA reactions are known, this is the first example of a three component DKHDA reaction involving 1,3-dicarbonyl, ketones, and alkynes producing spirocyclic pyranone derivatives. Twenty-six different highly substituted chromenones were synthesized using this methodology. A wide substrate scope due to the multicomponent nature of the reaction, high atom economy, the use of inexpensive and non-toxic recyclable silica as the catalyst, and solvent free reaction conditions make it an advantageous process. The catalyst was characterized using different analytical techniques such as XRD, IR, HRTEM, VSM, and TGA. Based on the earlier reports a mechanism has also been proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA