RESUMO
BACKGROUND: Influenza circulation during the 2022-2023 season in the United States largely returned to pre-coronavirus disease 2019 (COVID-19)-pandemic patterns and levels. Influenza A(H3N2) viruses were detected most frequently this season, predominately clade 3C.2a1b.2a, a close antigenic match to the vaccine strain. METHODS: To understand effectiveness of the 2022-2023 influenza vaccine against influenza-associated hospitalization, organ failure, and death, a multicenter sentinel surveillance network in the United States prospectively enrolled adults hospitalized with acute respiratory illness between 1 October 2022, and 28 February 2023. Using the test-negative design, vaccine effectiveness (VE) estimates against influenza-associated hospitalization, organ failures, and death were measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative control-patients. RESULTS: A total of 3707 patients, including 714 influenza cases (33% vaccinated) and 2993 influenza- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls (49% vaccinated) were analyzed. VE against influenza-associated hospitalization was 37% (95% confidence interval [CI]: 27%-46%) and varied by age (18-64 years: 47% [30%-60%]; ≥65 years: 28% [10%-43%]), and virus (A[H3N2]: 29% [6%-46%], A[H1N1]: 47% [23%-64%]). VE against more severe influenza-associated outcomes included: 41% (29%-50%) against influenza with hypoxemia treated with supplemental oxygen; 65% (56%-72%) against influenza with respiratory, cardiovascular, or renal failure treated with organ support; and 66% (40%-81%) against influenza with respiratory failure treated with invasive mechanical ventilation. CONCLUSIONS: During an early 2022-2023 influenza season with a well-matched influenza vaccine, vaccination was associated with reduced risk of influenza-associated hospitalization and organ failure.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Adulto , Humanos , Estados Unidos/epidemiologia , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Eficácia de Vacinas , Vírus da Influenza B , Hospitalização , Vacinação , Estações do AnoRESUMO
BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.
RESUMO
In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.
Assuntos
Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Humanos , Criança , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estudos de Casos e Controles , Eficácia de VacinasRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in specimens from 3204 individuals hospitalized with coronavirus disease 2019 (COVID-19) at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Mean Ct values at presentation for N were 24.14 (SD 4.53) for non-variants of concern, 25.15 (SD 4.33) for Alpha, 25.31 (SD 4.50) for Delta, and 26.26 (SD 4.42) for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements add little information for the purposes of estimating infectivity.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , RNA Subgenômico , Carga Viral , RNA , RNA Viral/genéticaRESUMO
INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Adulto , Feminino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Idoso , Masculino , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Mortalidade Hospitalar , OxigênioRESUMO
On June 21, 2023, CDC's Advisory Committee on Immunization Practices recommended respiratory syncytial virus (RSV) vaccination for adults aged ≥60 years, offered to individual adults using shared clinical decision-making. Informed use of these vaccines requires an understanding of RSV disease severity. To characterize RSV-associated severity, 5,784 adults aged ≥60 years hospitalized with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 U.S. states during February 1, 2022-May 31, 2023. Multivariable logistic regression was used to compare RSV disease severity with COVID-19 and influenza severity on the basis of the following outcomes: 1) standard flow (<30 L/minute) oxygen therapy, 2) high-flow nasal cannula (HFNC) or noninvasive ventilation (NIV), 3) intensive care unit (ICU) admission, and 4) invasive mechanical ventilation (IMV) or death. Overall, 304 (5.3%) enrolled adults were hospitalized with RSV, 4,734 (81.8%) with COVID-19 and 746 (12.9%) with influenza. Patients hospitalized with RSV were more likely to receive standard flow oxygen, HFNC or NIV, and ICU admission than were those hospitalized with COVID-19 or influenza. Patients hospitalized with RSV were more likely to receive IMV or die compared with patients hospitalized with influenza (adjusted odds ratio = 2.08; 95% CI = 1.33-3.26). Among hospitalized older adults, RSV was less common, but was associated with more severe disease than COVID-19 or influenza. High disease severity in older adults hospitalized with RSV is important to consider in shared clinical decision-making regarding RSV vaccination.
Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/terapia , Influenza Humana/epidemiologia , Influenza Humana/terapia , SARS-CoV-2 , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/terapia , Hospitalização , Gravidade do Paciente , OxigênioRESUMO
As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.
Assuntos
COVID-19 , Humanos , Adulto , Adolescente , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Mortalidade Hospitalar , Pandemias , Respiração Artificial , SARS-CoV-2 , RNA MensageiroRESUMO
The SARS-CoV-2 Omicron variant (B.1.1.529 or BA.1) became predominant in the United States by late December 2021 (1). BA.1 has since been replaced by emerging lineages BA.2 (including BA.2.12.1) in March 2022, followed by BA.4 and BA.5, which have accounted for a majority of SARS-CoV-2 infections since late June 2022 (1). Data on the effectiveness of monovalent mRNA COVID-19 vaccines against BA.4/BA.5-associated hospitalizations are limited, and their interpretation is complicated by waning of vaccine-induced immunity (2-5). Further, infections with earlier Omicron lineages, including BA.1 and BA.2, reduce vaccine effectiveness (VE) estimates because certain persons in the referent unvaccinated group have protection from infection-induced immunity. The IVY Network assessed effectiveness of 2, 3, and 4 doses of monovalent mRNA vaccines compared with no vaccination against COVID-19-associated hospitalization among immunocompetent adults aged ≥18 years during December 26, 2021-August 31, 2022. During the BA.1/BA.2 period, VE 14-150 days after a second dose was 63% and decreased to 34% after 150 days. Similarly, VE 7-120 days after a third dose was 79% and decreased to 41% after 120 days. VE 7-120 days after a fourth dose was 61%. During the BA.4/BA.5 period, similar trends were observed, although CIs for VE estimates between categories of time since the last dose overlapped. VE 14-150 days and >150 days after a second dose was 83% and 37%, respectively. VE 7-120 days and >120 days after a third dose was 60%and 29%, respectively. VE 7-120 days after the fourth dose was 61%. Protection against COVID-19-associated hospitalization waned even after a third dose. The newly authorized bivalent COVID-19 vaccines include mRNA from the ancestral SARS-CoV-2 strain and from shared mRNA components between BA.4 and BA.5 lineages and are expected to be more immunogenic against BA.4/BA.5 than monovalent mRNA COVID-19 vaccines (6-8). All eligible adults aged ≥18 years§ should receive a booster dose, which currently consists of a bivalent mRNA vaccine, to maximize protection against BA.4/BA.5 and prevent COVID-19-associated hospitalization.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Estados Unidos/epidemiologia , Humanos , Adolescente , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Hospitalização , Vacinas Combinadas , RNA Mensageiro , Vacinas de mRNARESUMO
Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).
Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Eficácia de Vacinas , Hospitalização , RNA Mensageiro , Vacinas CombinadasRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing remains essential for early identification and clinical management of cases. We compared the diagnostic performance of 3 specimen types for characterizing SARS-CoV-2 in infected nursing home residents. METHODS: A convenience sample of 17 residents were enrolled within 15 days of first positive SARS-CoV-2 result by real-time reverse transcription polymerase chain reaction (RT-PCR) and prospectively followed for 42 days. Anterior nasal swabs (AN), oropharyngeal swabs (OP), and saliva specimens (SA) were collected on the day of enrollment, every 3 days for the first 21 days, and then weekly for 21 days. Specimens were tested for presence of SARS-CoV-2 RNA using RT-PCR and replication-competent virus by viral culture. RESULTS: Comparing the 3 specimen types collected from each participant at each time point, the concordance of paired RT-PCR results ranged from 80% to 88%. After the first positive result, SA and OP were RT-PCR-positive for ≤48 days; AN were RT-PCR-positive for ≤33 days. AN had the highest percentage of RT-PCR-positive results (21/26 [81%]) when collected ≤10 days of participants' first positive result. Eleven specimens were positive by viral culture: 9 AN collected ≤19 days following first positive result and 2 OP collected ≤5 days following first positive result. CONCLUSIONS: AN, OP, and SA were effective methods for repeated testing in this population. More AN than OP were positive by viral culture. SA and OP remained RT-PCR-positive longer than AN, which could lead to unnecessary interventions if RT-PCR detection occurred after viral shedding has likely ceased.
Assuntos
COVID-19 , SARS-CoV-2 , Arkansas , Humanos , Casas de Saúde , RNA Viral/genéticaRESUMO
COVID-19 mRNA vaccines (Pfizer-BioNTech and Moderna) have been shown to be highly protective against COVID-19-associated hospitalizations (1-3). Data are limited on the level of protection against hospitalization among disproportionately affected populations in the United States, particularly during periods in which the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, predominates (2). U.S. veterans are older, more racially diverse, and have higher prevalences of underlying medical conditions than persons in the general U.S. population (2,4). CDC assessed the effectiveness of mRNA vaccines against COVID-19-associated hospitalization among 1,175 U.S. veterans aged ≥18 years hospitalized at five Veterans Affairs Medical Centers (VAMCs) during February 1-August 6, 2021. Among these hospitalized persons, 1,093 (93.0%) were men, the median age was 68 years, 574 (48.9%) were non-Hispanic Black (Black), 475 were non-Hispanic White (White), and 522 (44.4%) had a Charlson comorbidity index score of ≥3 (5). Overall adjusted vaccine effectiveness against COVID-19-associated hospitalization was 86.8% (95% confidence interval [CI] = 80.4%-91.1%) and was similar before (February 1-June 30) and during (July 1-August 6) SARS-CoV-2 Delta variant predominance (84.1% versus 89.3%, respectively). Vaccine effectiveness was 79.8% (95% CI = 67.7%-87.4%) among adults aged ≥65 years and 95.1% (95% CI = 89.1%-97.8%) among those aged 18-64 years. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated hospitalization in this older, racially diverse population of predominately male U.S. veterans. Additional evaluations of vaccine effectiveness among various age groups are warranted. To prevent COVID-19-related hospitalizations, all eligible persons should receive COVID-19 vaccination.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , Veteranos/estatística & dados numéricos , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/terapia , Feminino , Hospitais de Veteranos , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , United States Department of Veterans Affairs , Vacinas Sintéticas , Adulto Jovem , Vacinas de mRNARESUMO
The mRNA COVID-19 vaccines (Moderna and Pfizer-BioNTech) provide strong protection against severe COVID-19, including hospitalization, for at least several months after receipt of the second dose (1,2). However, studies examining immune responses and differences in protection against COVID-19-associated hospitalization in real-world settings, including by vaccine product, are limited. To understand how vaccine effectiveness (VE) might change with time, CDC and collaborators assessed the comparative effectiveness of Moderna and Pfizer-BioNTech vaccines in preventing COVID-19-associated hospitalization at two periods (14-119 days and ≥120 days) after receipt of the second vaccine dose among 1,896 U.S. veterans at five Veterans Affairs medical centers (VAMCs) during February 1-September 30, 2021. Among 234 U.S. veterans fully vaccinated with an mRNA COVID-19 vaccine and without evidence of current or prior SARS-CoV-2 infection, serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2 were also compared. Adjusted VE 14-119 days following second Moderna vaccine dose was 89.6% (95% CI = 80.1%-94.5%) and after the second Pfizer-BioNTech dose was 86.0% (95% CI = 77.6%-91.3%); at ≥120 days VE was 86.1% (95% CI = 77.7%-91.3%) for Moderna and 75.1% (95% CI = 64.6%-82.4%) for Pfizer-BioNTech. Antibody levels were significantly higher among Moderna recipients than Pfizer-BioNTech recipients across all age groups and periods since vaccination; however, antibody levels among recipients of both products declined between 14-119 days and ≥120 days. These findings from a cohort of older, hospitalized veterans with high prevalences of underlying conditions suggest the importance of booster doses to help maintain long-term protection against severe COVID-19..
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/análise , Vacina BNT162/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Eficácia de Vacinas/estatística & dados numéricos , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Idoso , Vacina BNT162/administração & dosagem , COVID-19/epidemiologia , COVID-19/imunologia , Estudos de Coortes , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fatores de Tempo , Estados Unidos/epidemiologia , Veteranos/estatística & dados numéricos , Serviços de Saúde para Veteranos MilitaresRESUMO
Tuberculosis (TB) is the leading cause of death among persons living with human immunodeficiency virus (HIV) infection. In 2018, an estimated 251,000 persons living with HIV infection died from TB, accounting for one third of all HIV-related deaths and one sixth of all TB deaths (1). TB preventive treatment (TPT) is recommended by the World Health Organization (WHO) for persons living with HIV infection without active TB disease (i.e., adults with a negative clinical symptom screen for cough, fever, night sweats, or weight loss; and children with a negative clinical screen for cough, fever, contact with a person with TB, or poor weight gain) and either without* a tuberculin skin test result or with a known positive result (2). TPT decreases morbidity and mortality among persons living with HIV infection, independent of antiretroviral therapy (ART) (3); however, in 2017, fewer than 1 million of the estimated 21.3 million ART patients started TPT worldwide. Most patients receiving TPT were treated with 6 months of daily isoniazid (1,4). This report summarizes data on TB symptom screening and TPT initiation and completion among ART patients in 16 countries supported by the U.S. President's Emergency Plan for AIDS Relief (PEPFAR) during April 1, 2017-March 31, 2019. During this period, these 16 countries accounted for approximately 90% of PEPFAR-supported ART patients. During April 1, 2017-September 30, 2018, TB symptom screening increased from 54% to 84%. Overall, nearly 2 million ART patients initiated TPT, and 60% completed treatment during October 1, 2017-March 31, 2019. Although TPT initiations increased substantially, completion among those who initiated TPT increased only from 55% to 66%. In addition to continuing gains in initiation, improving retention after initiation and identifying barriers to TPT completion are important to increase TPT scale-up and reduce global TB mortality.
Assuntos
Síndrome da Imunodeficiência Adquirida/prevenção & controle , Antirretrovirais/uso terapêutico , Cooperação Internacional , Tuberculose/prevenção & controle , Síndrome da Imunodeficiência Adquirida/epidemiologia , África/epidemiologia , Humanos , Tuberculose/epidemiologia , Estados UnidosRESUMO
This study evaluates the effectiveness of the respiratory syncytial virus vaccine against hospitalization for acute respiratory illness among US adults aged 60 years and older.
Assuntos
Hospitalização , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Eficácia de Vacinas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Hospitalização/estatística & dados numéricos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Estados Unidos/epidemiologia , Eficácia de Vacinas/estatística & dados numéricosRESUMO
BACKGROUND: HIV is a major driver of the tuberculosis epidemic in sub-Saharan Africa. The population-level impact of antiretroviral therapy (ART) scale-up on tuberculosis rates in this region has not been well studied. We conducted a descriptive analysis to examine evidence of population-level effect of ART on tuberculosis by comparing trends in estimated tuberculosis notification rates, by HIV status, for countries in sub-Saharan Africa. METHODS: We estimated annual tuberculosis notification rates, stratified by HIV status during 2010-2015 using data from WHO, the Joint United Nations Programme on HIV/AIDS, and the United Nations Population Division. Countries were included in this analysis if they had ≥4 years of HIV prevalence estimates and ≥ 75% of tuberculosis patients with known HIV status. We compared tuberculosis notification rates among people living with HIV (PLHIV) and people without HIV via Wilcoxon rank sum test. RESULTS: Among 23 included countries, the median annual average change in tuberculosis notification rates among PLHIV during 2010-2015 was -5.7% (IQR -6.9 to -1.7%), compared to a median change of -2.3% (IQR -4.2 to -0.1%) among people without HIV (p-value = 0.0099). Among 11 countries with higher ART coverage, the median annual average change in TB notification rates among PLHIV was -6.8% (IQR -7.6 to -5.7%) compared to a median change of -2.1% (IQR -6.0 to 0.7%) for PLHIV in 12 countries with lower ART coverage (p = 0.0106). CONCLUSION: Tuberculosis notification rates declined more among PLHIV than people without HIV, and have declined more in countries with higher ART coverage. These results are consistent with a population-level effect of ART on decreasing TB incidence among PLHIV. To further reduce TB incidence among PLHIV, additional scale-up of ART as well as greater use of isoniazid preventive therapy and active case-finding will be necessary.
Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Tuberculose/diagnóstico , Adolescente , Adulto , África Subsaariana/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Tuberculose/epidemiologia , Organização Mundial da Saúde , Adulto JovemRESUMO
During 2012-2015, 10 of 24 patients infected with matching genotypes of Mycobacterium tuberculosis received care at the same hospital in Gaborone, Botswana. Nosocomial transmission was initially suspected, but we discovered plausible sites of community transmission for 20 (95%) of 21 interviewed patients. Active case-finding at these sites could halt ongoing transmission.
Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/transmissão , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Tuberculose/transmissão , Adolescente , Adulto , Botsuana/epidemiologia , Análise por Conglomerados , Infecções Comunitárias Adquiridas/epidemiologia , Surtos de Doenças , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention.
Assuntos
Síndrome da Imunodeficiência Adquirida , COVID-19 , Neoplasias , Humanos , Linfócitos B , COVID-19/epidemiologia , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Estudos ProspectivosRESUMO
Importance: On June 21, 2023, the Centers for Disease Control and Prevention recommended the first respiratory syncytial virus (RSV) vaccines for adults aged 60 years and older using shared clinical decision-making. Understanding the severity of RSV disease in adults can help guide this clinical decision-making. Objective: To describe disease severity among adults hospitalized with RSV and compare it with the severity of COVID-19 and influenza disease by vaccination status. Design, Setting, and Participants: In this cohort study, adults aged 18 years and older admitted to the hospital with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 US states from February 1, 2022, to May 31, 2023. Clinical data during each patient's hospitalization were collected using standardized forms. Data were analyzed from August to October 2023. Exposures: RSV, SARS-CoV-2, or influenza infection. Main Outcomes and Measures: Using multivariable logistic regression, severity of RSV disease was compared with COVID-19 and influenza severity, by COVID-19 and influenza vaccination status, for a range of clinical outcomes, including the composite of invasive mechanical ventilation (IMV) and in-hospital death. Results: Of 7998 adults (median [IQR] age, 67 [54-78] years; 4047 [50.6%] female) included, 484 (6.1%) were hospitalized with RSV, 6422 (80.3%) were hospitalized with COVID-19, and 1092 (13.7%) were hospitalized with influenza. Among patients with RSV, 58 (12.0%) experienced IMV or death, compared with 201 of 1422 unvaccinated patients with COVID-19 (14.1%) and 458 of 5000 vaccinated patients with COVID-19 (9.2%), as well as 72 of 699 unvaccinated patients with influenza (10.3%) and 20 of 393 vaccinated patients with influenza (5.1%). In adjusted analyses, the odds of IMV or in-hospital death were not significantly different among patients hospitalized with RSV and unvaccinated patients hospitalized with COVID-19 (adjusted odds ratio [aOR], 0.82; 95% CI, 0.59-1.13; P = .22) or influenza (aOR, 1.20; 95% CI, 0.82-1.76; P = .35); however, the odds of IMV or death were significantly higher among patients hospitalized with RSV compared with vaccinated patients hospitalized with COVID-19 (aOR, 1.38; 95% CI, 1.02-1.86; P = .03) or influenza disease (aOR, 2.81; 95% CI, 1.62-4.86; P < .001). Conclusions and Relevance: Among adults hospitalized in this US cohort during the 16 months before the first RSV vaccine recommendations, RSV disease was less common but similar in severity compared with COVID-19 or influenza disease among unvaccinated patients and more severe than COVID-19 or influenza disease among vaccinated patients for the most serious outcomes of IMV or death.
Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Estados Unidos/epidemiologia , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Vírus Sinciciais Respiratórios , Influenza Humana/epidemiologia , Estudos de Coortes , Mortalidade Hospitalar , COVID-19/epidemiologia , SARS-CoV-2 , Vacinas contra Influenza/uso terapêutico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/terapiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.
RESUMO
Background: Assessing COVID-19 vaccine effectiveness (VE) and severity of SARS-CoV-2 variants can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial genomic divergence from co-circulating XBB lineages. Methods: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated the effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. Results: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. Conclusions: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB lineage hospitalizations.