Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 133: 103610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101146

RESUMO

DNA is the major target of radiation therapy of malignant tumors. Ionizing radiation (IR) induces a variety of DNA lesions, including chemically modified bases and strand breaks. The use of proton beam therapy for cancer treatment is ramping up, as it is expected to reduce normal tissue damage. Thus, it is important to understand the molecular mechanisms of recognition, signaling, and repair of DNA damage induced by protons in the perspective of assessing not only the risk associated with human exposure to IR but also the possibility to improve the efficacy of therapy. Here, we used targeted irradiation of nuclear regions of living cells with controlled number of protons at a high spatio-temporal resolution to detect the induced base lesions and characterize the recruitment kinetics of the specific DNA glycosylases to DNA damage sites. We show that localized irradiation with 4 MeV protons induces, in addition to DNA double strand breaks (DSBs), the oxidized bases 7,8-dihydro-8-oxoguanine (8-oxoG) and thymine glycol (TG) at the site of irradiation. Consistently, the DNA glycosylases OGG1 and NTH1, capable of excising 8-oxoG and TG, respectively, and initiating the base excision repair (BER) pathway, are recruited to the site of damage. To our knowledge, this is the first direct evidence indicating that proton microbeams induce oxidative base damage, and thus implicating BER in the repair of DNA lesions induced by protons.


Assuntos
DNA Glicosilases , Humanos , DNA Glicosilases/metabolismo , Prótons , Reparo do DNA , Estresse Oxidativo , Dano ao DNA , DNA/metabolismo
2.
Cell Death Differ ; 30(8): 1900-1915, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400716

RESUMO

Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.


Assuntos
Reparo do DNA , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos SCID , Dano ao DNA , Desenvolvimento Muscular , Caspases/metabolismo , DNA
3.
Stem Cell Investig ; 5: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780813

RESUMO

Skeletal muscle stem cells in the adult display heterogeneity that has been functionally linked to their behavior, self-renewal capacity, and resistance to stress in hostile environments. Behavioral heterogeneity emerges also during developmental myogenesis. Muscle stem cell diversity may be functionally linked to the changing needs of skeletal muscle regeneration. Intriguingly, dramatic reduction of stem cell diversity, the "clonal drift", that implies loss of stem cells and related expansion of clonally related stem cells has been reported for tissue replacement in several adult tissues and suggested in the zebrafish embryo. A recent study shows clonal drift of muscle stem cells in the zebrafish embryo caused by inhibition of the cell cycle and directed by the homeobox protein Meox1. Although stem cell quiescence is associated with inhibition of the transition phase G0/G1 of the cell cycle, Meox1 triggers the muscle stem cell fate by an arrest in G2 phase. Why efficient muscle growth in the zebrafish embryo requires sacrificing stem cell heterogeneity in favor of a small number of dominant clones has not been elucidated. The significance of G2-halted stem cells, which are generally associated with robust regeneration capacity, is also intriguing. These processes are relevant for understanding organ growth and the mechanisms that govern stem cell quiescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA