Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biopreserv Biobank ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457650

RESUMO

Postmortem brain donation for medical research is a little-known form of organ donation. While most brain research is carried out using animal models, many neurological diseases are uniquely human. Greater availability of human postmortem brain tissue from diseased individuals and controls would therefore improve the development of treatments for neurological and neuropsychiatric diseases. Globally, organ donation for medical research is dwarfed by organ donation for transplantation. In 2021, 36% of Australians were registered organ donors for transplantation, with public "in-principle" support even higher, at 76%. In contrast, there are little data on Australian or international brain donation rates for research. A 30-item online survey was conducted to ascertain knowledge of, and attitudes toward, brain donation in Australia. Of the respondents, 12/237 (5%) were current brain donors and excluded from further analysis. Of the remaining 225, 75% were registered organ donors for transplant. The vast majority (n = 189/225, 84%) of respondents supported or strongly supported the principle of brain donation. However, of those registered for transplantation or whole-body donors, 93/170 (55%) were not aware that brain donation was possible, while 50%, alternatively or also, thought that registering as an organ donor for transplantation rendered them a brain donor by default. Only 9/225 (4%) respondents indicated that they would definitely not donate their brain in the future, while 27 remained unsure. There is prominent public support for brain donation in Australia, with 84% of respondents willing to donate their brain. Yet, the extent of public misconceptions on brain donation for research suggests the need for further education on all types of organ donation, so individuals may make informed decisions.

2.
Appl Immunohistochem Mol Morphol ; 32(5): 207-214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712585

RESUMO

The New South Wales Brain Tissue Resource Centre is a human brain bank that provides top-quality brain tissue for cutting-edge neuroscience research spanning various conditions from alcohol use disorder to neurodegenerative diseases. However, the conventional practice of preserving brain tissue in formalin poses challenges for immunofluorescent staining primarily due to the formalin's tendency, over time, to create cross-links between antigens, which can obscure epitopes of interest. In addition, researchers can encounter issues such as spectral bleeding, limitations in using multiple colors, autofluorescence, and cross-reactivity when working with long-term formalin-fixed brain tissue. The purpose of the study was to test chromogen-based double immunolabeling to negate the issues with immunofluorescent staining. Colocalization of antigens was explored using chromogens 3-amino-9-ethylcarbazole (AEC) and 3,3,-diaminobenzidine in a sequential staining procedure where the AEC signal was eliminated by alcohol treatment. Combinations of 2 or 3 primary antibodies from the same or different species were trialed successfully with this protocol. The colocalization of antigens was also demonstrated with pseudocoloring that mimicked immunofluorescence staining. This staining technique increases the utility of archival formalin-fixed tissue samples.


Assuntos
Formaldeído , Imuno-Histoquímica , Fixação de Tecidos , Humanos , Imuno-Histoquímica/métodos , Fixação de Tecidos/métodos , Coloração e Rotulagem/métodos , Bancos de Tecidos , Encéfalo/metabolismo , Encéfalo/patologia , Animais , 3,3'-Diaminobenzidina , Bancos de Espécimes Biológicos
3.
Alcohol ; 119: 17-22, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763230

RESUMO

Phosphatidylethanol (PEth) is an alcohol derivative that has been employed as a blood-based biomarker for regular alcohol use. This study investigates the utility of phosphatidylethanol (PEth) as a biomarker for assessing alcohol consumption in post-mortem brain tissue. Using samples from the New South Wales Brain Tissue Resource Centre, we analysed PEth(16:0/18:1) levels in the cerebellum and meninges of individuals with varying histories of alcohol use, including those diagnosed with alcohol use disorder (AUD) and controls. Our findings demonstrate a significant correlation between PEth levels and blood alcohol content (BAC) at the time of death, supporting the biomarker's sensitivity to recent alcohol intake. Furthermore, this study explores the potential of PEth levels in differentiating AUD cases from controls, taking into consideration the complexities of diagnosing AUD post-mortem. The study also examined the relationship between PEth levels and liver pathology, identifying a link with the severity of liver damage. These results underscore the value of PEth as a reliable indicator of alcohol consumption and its potential contributions to post-mortem diagnostics and consequently, research into alcohol-related brain damage.


Assuntos
Alcoolismo , Autopsia , Concentração Alcoólica no Sangue , Encéfalo , Glicerofosfolipídeos , Humanos , Glicerofosfolipídeos/sangue , Masculino , Feminino , Alcoolismo/sangue , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/patologia , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Consumo de Bebidas Alcoólicas/sangue , Fígado/patologia , Fígado/química , Fígado/metabolismo
4.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915509

RESUMO

Underlying drivers of late-onset Alzheimer's disease (LOAD) pathology remain unknown. However, multiple biologically diverse risk factors share a common pathological progression. To identify convergent molecular abnormalities that drive LOAD pathogenesis we compared two common midlife risk factors for LOAD, heavy alcohol use and obesity. This revealed that disrupted lipophagy is an underlying cause of LOAD pathogenesis. Both exposures reduced lysosomal flux, with a loss of neuronal lysosomal acid lipase (LAL). This resulted in neuronal lysosomal lipid (NLL) accumulation, which opposed Aß localization to lysosomes. Neuronal LAL loss both preceded (with aging) and promoted (targeted knockdown) Aß pathology and cognitive deficits in AD mice. The addition of recombinant LAL ex vivo and neuronal LAL overexpression in vivo prevented amyloid increases and improved cognition. In WT mice, neuronal LAL declined with aging and correlated negatively with entorhinal Aß. In healthy human brain, LAL also declined with age, suggesting this contributes to the age-related vulnerability for AD. In human LOAD LAL was further reduced, correlated negatively with Aß1-42, and occurred with polymerase pausing at the LAL gene. Together, this finds that the loss of neuronal LAL promotes NLL accumulation to impede degradation of Aß in neuronal lysosomes to drive AD amyloid pathology.

5.
Alcohol Clin Exp Res (Hoboken) ; 48(2): 250-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38276909

RESUMO

BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA