Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(17): 174301, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978237

RESUMO

When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

2.
Nat Mater ; 9(5): 418-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20190770

RESUMO

Recent years have seen great advances in our ability to predict crystal structures from first principles. However, previous algorithms have focused on the prediction of bulk crystal structures, where the global minimum is the target. Here, we present a general atomistic approach to simulate in multicomponent systems the structures and free energies of grain boundaries and heterophase interfaces with fixed stoichiometric and non-stoichiometric compositions. The approach combines a new genetic algorithm using empirical interatomic potentials to explore the configurational phase space of boundaries, and thereafter refining structures and free energies with first-principles electronic structure methods. We introduce a structural order parameter to bias the genetic algorithm search away from the global minimum (which would be bulk crystal), while not favouring any particular structure types, unless they lower the energy. We demonstrate the power and efficiency of the algorithm by considering non-stoichiometric grain boundaries in a ternary oxide, SrTiO(3).

3.
Science ; 357(6349): 397-400, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751608

RESUMO

We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

4.
Proc Math Phys Eng Sci ; 473(2203): 20170189, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28804261

RESUMO

We test a hypothesis to explain why Ti-6242 is susceptible to cold dwell fatigue (CDF), whereas Ti-6246 is not. The hypothesis is that, in Ti-6246, substitutional Mo-atoms in α-Ti grains trap vacancies, thereby limiting creep relaxation. In Ti-6242, this creep relaxation enhances the loading of grains unfavourably oriented for slip and they subsequently fracture. Using density functional theory to calculate formation and binding energies between Mo-atoms and vacancies, we find no support for the hypothesis. In the light of this result, and experimental observations of the microstructures in these alloys, we agree with the recent suggestion (Qiu et al. 2014 Metall. Mater. Trans. A45, 6075-6087. (doi:10.1007/s11661-014-2541-5)) that Ti-6246 has a much smaller susceptibility to CDF because it has a smaller grain size and a more homogeneous distribution of grain orientations. We propose that the reduction of the susceptibility to CDF of Ti-6242 at temperatures above about 200°C is due to the activation of 〈c+a〉 slip in 'hard' grains, which reduces the loading of grain boundaries.

5.
Proc Math Phys Eng Sci ; 471(2181): 20150433, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26528080

RESUMO

The elastodynamic image forces on edge and screw dislocations in the presence of a planar-free surface are derived. The explicit form of the elastodynamic fields of an injected, quiescent screw dislocation are also derived. The resulting image forces are affected by retardation effects: the dislocations experience no image force for a period of time defined by the arrival and reflection at the free surface of the dislocation fields. For the case of injected, stationary dislocations, it is shown that the elastodynamic image force tends asymptotically to the elastotatic prediction. For the case of injected, moving dislocations, it is shown that the elastodynamic image force on both the edge and the screw dislocations is magnified by inertial effects, and becomes increasingly divergent with time; this additional effect, missing in the elastostatic description, is shown to be substantial even for slow moving dislocations. Finally, it is shown that the elastodynamic image force of an edge dislocation moving towards the surface at the Rayleigh wave speed becomes repulsive, rather than attractive; this is suggestive of instabilities at the core of the dislocation, and likely resonances with the free surface.

6.
Philos Trans A Math Phys Eng Sci ; 363(1833): 1961-74, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16099760

RESUMO

High molecular weight polymer systems show very long relaxation times, of the order of milliseconds or more. This time-scale proves practically inaccessible for atomic-scale dynamical simulation such as molecular dynamics. Even with a Monte Carlo (MC) simulation, the generation of statistically independent configurations is non-trivial. Many moves have been proposed to enhance the efficiency of MC simulation of polymers. Each is described by a proposal density Q(x'; x): the probability of selecting the trial state x' given that the system is in the current state x. This proposal density must be parametrized for a particular chain length, chemistry and temperature. Choosing the correct set of parameters can greatly increase the rate at which the system explores its configuration space. Computational steering (CS) provides a new methodology for a systematic search to optimize the proposal densities for individual moves, and to combine groups of moves to greatly improve the equilibration of a model polymer system. We show that monitoring the correlation time of the system is an ideal single parameter for characterizing the efficiency of a proposal density function, and that this is best evaluated by a distributed network of replicas of the system, with the operator making decisions based on the averages generated over these replicas. We have developed an MC code for simulating an anisotropic atomistic bead model which implements the CS paradigm. We report simulations of thin film polystyrene.


Assuntos
Simulação por Computador , Membranas Artificiais , Modelos Químicos , Poliestirenos/química , Software , Algoritmos , Computação Matemática , Modelos Estatísticos , Método de Monte Carlo , Movimento (Física) , Poliestirenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA