Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015437

RESUMO

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Humanos , DNA , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
2.
Proc Natl Acad Sci U S A ; 120(51): e2311372120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085778

RESUMO

The placenta serves as the interface between the mother and fetus, facilitating the exchange of gases and nutrients between their separate blood circulation systems. Trophoblasts in the placenta play a central role in this process. Our current understanding of mammalian trophoblast development relies largely on mouse models. However, given the diversification of mammalian placentas, findings from the mouse placenta cannot be readily extrapolated to other mammalian species, including humans. To fill this knowledge gap, we performed CRISPR knockout screening in human trophoblast stem cells (hTSCs). We targeted genes essential for mouse placental development and identified more than 100 genes as critical regulators in both human hTSCs and mouse placentas. Among them, we further characterized in detail two transcription factors, DLX3 and GCM1, and revealed their essential roles in hTSC differentiation. Moreover, a gene function-based comparison between human and mouse trophoblast subtypes suggests that their relationship may differ significantly from previous assumptions based on tissue localization or cellular function. Notably, our data reveal that hTSCs may not be analogous to mouse TSCs or the extraembryonic ectoderm (ExE) in which in vivo TSCs reside. Instead, hTSCs may be analogous to progenitor cells in the mouse ectoplacental cone and chorion. This finding is consistent with the absence of ExE-like structures during human placental development. Our data not only deepen our understanding of human trophoblast development but also facilitate cross-species comparison of mammalian placentas.


Assuntos
Placenta , Placentação , Humanos , Gravidez , Camundongos , Feminino , Animais , Placentação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Trofoblastos , Diferenciação Celular , Células-Tronco , Mamíferos
3.
Hum Mol Genet ; 32(7): 1175-1183, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36349694

RESUMO

Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.


Assuntos
Variações do Número de Cópias de DNA , Perda de Heterozigosidade , Humanos , Variações do Número de Cópias de DNA/genética , Mutação , Perda de Heterozigosidade/genética , Mosaicismo , Cromossomos
4.
BMC Genomics ; 25(1): 143, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317092

RESUMO

BACKGROUND: Histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), plays a crucial role in the control of gene expression. HDAC inhibitors (HDACi) have shown potential in cancer therapy; however, the specific roles of HDACs in early embryos remain unclear. Moreover, although some pan-HDACi have been used to maintain cellular undifferentiated states in early embryos, the specific mechanisms underlying their effects remain unknown. Thus, there remains a significant knowledge gap regarding the application of selective HDACi in early embryos. RESULTS: To address this gap, we treated early embryos with two selective HDACi (MGCD0103 and T247). Subsequently, we collected and analyzed their transcriptome data at different developmental stages. Our findings unveiled a significant effect of HDACi treatment during the crucial 2-cell stage of zygotes, leading to a delay in embryonic development after T247 and an arrest at 2-cell stage after MGCD0103 administration. Furthermore, we elucidated the regulatory targets underlying this arrested embryonic development, which pinpointed the G2/M phase as the potential period of embryonic development arrest caused by MGCD0103. Moreover, our investigation provided a comprehensive profile of the biological processes that are affected by HDACi, with their main effects being predominantly localized in four aspects of zygotic gene activation (ZGA): RNA splicing, cell cycle regulation, autophagy, and transcription factor regulation. By exploring the transcriptional regulation and epigenetic features of the genes affected by HDACi, we made inferences regarding the potential main pathways via which HDACs affect gene expression in early embryos. Notably, Hdac7 exhibited a distinct response, highlighting its potential as a key player in early embryonic development. CONCLUSIONS: Our study conducted a comprehensive analysis of the effects of HDACi on early embryonic development at the transcriptional level. The results demonstrated that HDACi significantly affected ZGA in embryos, elucidated the distinct actions of various selective HDACi, and identified specific biological pathways and mechanisms via which these inhibitors modulated early embryonic development.


Assuntos
Inibidores de Histona Desacetilases , Transcriptoma , Gravidez , Feminino , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Benzamidas/farmacologia , Pirimidinas/farmacologia
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074765

RESUMO

Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.


Assuntos
Genitália Masculina/metabolismo , Diferenciação Sexual , Acetilação , Androgênios , Animais , Sistemas CRISPR-Cas , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Fator de Transcrição MafB , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Receptores Androgênicos , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 17(8): e1009686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351912

RESUMO

Although long noncoding RNAs (lncRNAs) are transcripts that do not encode proteins by definition, some lncRNAs actually contain small open reading frames that are translated. TINCR (terminal differentiation-induced ncRNA) has been recognized as a lncRNA that contributes to keratinocyte differentiation. However, we here show that TINCR encodes a ubiquitin-like protein that is well conserved among species and whose expression was confirmed by the generation of mice harboring a FLAG epitope tag sequence in the endogenous open reading frame as well as by targeted proteomics. Forced expression of this protein promoted cell cycle progression in normal human epidermal keratinocytes, and mice lacking this protein manifested a delay in skin wound healing associated with attenuated cell cycle progression in keratinocytes. We termed this protein TINCR-encoded ubiquitin-like protein (TUBL), and our results reveal a role for TINCR in the regulation of keratinocyte proliferation and skin regeneration that is dependent on TUBL.


Assuntos
Queratinócitos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Queratinócitos/metabolismo , Camundongos , Fases de Leitura Aberta , Proteômica , Ubiquitinas/genética , Ubiquitinas/metabolismo , Cicatrização
7.
BMC Cancer ; 23(1): 619, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400777

RESUMO

BACKGROUND: Whole-genome doubling (WGD) is a common mutation in cancer. Various studies have suggested that WGD is associated with a poor prognosis in cancer. However, the detailed association between WGD occurrence and prognosis remains unclear. In this study, we aimed to elucidate the mechanism by which WGD affects prognosis using sequencing data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and The Cancer Genome Atlas. METHODS: Whole-genome sequencing data of 23 cancer types were downloaded from PCAWG project. We defined the WGD event in each sample using the WGD status annotated using PCAWG. We used MutationTimeR to predict the relative timings of mutations and loss of heterozygosity (LOH) in WGD, thus evaluating their association with WGD. We also analyzed the association between WGD-associated factors and patient prognosis. RESULTS: WGD was associated with several factors, e.g., length of LOH regions. Survival analysis using WGD-associated factors revealed that longer LOH regions and LOH in chr17 were associated with poor prognosis in samples with WGD (WGD samples) and samples without WGD (nWGD samples). In addition to these two factors, nWGD samples showed that the number of mutations in tumor suppressor genes was associated with prognosis. Moreover, we explored the genes associated with prognosis in both samples separately. CONCLUSION: The prognosis-related factors in WGD samples differed significantly compared with those in nWGD samples. This study emphasizes the need for different treatment strategies for WGD and nWGD samples.


Assuntos
Genoma Humano , Neoplasias , Humanos , Neoplasias/genética , Mutação , Perda de Heterozigosidade , Prognóstico
8.
PLoS Comput Biol ; 18(8): e1010436, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037215

RESUMO

Genomic variations are associated with gene expression levels, which are called expression quantitative trait loci (eQTL). Most eQTL may affect the total gene expression levels by regulating transcriptional activities of a specific promoter. However, the direct exploration of genomic loci associated with promoter activities using RNA-seq data has been challenging because eQTL analyses treat the total expression levels estimated by summing those of all isoforms transcribed from distinct promoters. Here we propose a new method for identifying genomic loci associated with promoter activities, called promoter usage quantitative trait loci (puQTL), using conventional RNA-seq data. By leveraging public RNA-seq datasets from the lymphoblastoid cell lines of 438 individuals from the GEUVADIS project, we obtained promoter activity estimates and mapped 2,592 puQTL at the 10% FDR level. The results of puQTL mapping enabled us to interpret the manner in which genomic variations regulate gene expression. We found that 310 puQTL genes (16.1%) were not detected by eQTL analysis, suggesting that our pipeline can identify novel variant-gene associations. Furthermore, we identified genomic loci associated with the activity of "hidden" promoters, which the standard eQTL studies have ignored. We found that most puQTL signals were concordant with at least one genome-wide association study (GWAS) signal, enabling novel interpretations of the molecular mechanisms of complex traits. Our results emphasize the importance of the re-analysis of public RNA-seq datasets to obtain novel insights into gene regulation by genomic variations and their contributions to complex traits.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , RNA-Seq
9.
Exp Cell Res ; 420(1): 113307, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028059

RESUMO

The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB, and NF-YC. Although it is suggested that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function, its precise role in lipid metabolism is not clarified yet. In Drosophila, eye disc specific knockdown of Drosophila NF-YA (dNF-YA) induced aberrant morphology of the compound eye, the rough eye phenotype in adults and mutation of the lipase 4 (lip4) gene suppressed the rough eye phenotype. RNA-seq analyses with dNF-YA knockdown third instar larvae identified the lip4 gene as one of the genes that are up-regulated by the dNF-YA knockdown. We identified three dNF-Y-binding consensuses in the 5'flanking region of the lip4 gene, and a chromatin immunoprecipitation assay with the specific anti-dNF-YA IgG demonstrated dNF-Y binding to this genomic region. The luciferase transient expression assay with cultured Drosophila S2 cells and the lip4 promoter-luciferase fusion genes with and without mutations in the dNF-Y-binding consensuses showed that each of the three dNF-Y consensus sequences negatively regulated lip4 gene promoter activity. Consistent with these results, qRT-PCR analysis with the dNF-YA knockdown third instar larvae revealed that endogenous lip4 mRNA levels were increased by the knockdown of dNF-YA in vivo. The specific knockdown of dNF-YA in the fat body with the collagen-GAL4 driver resulted in smaller oil droplets in the fat body cells. Collectively, these results suggest that dNF-Y is involved in lipid storage through its negative regulation of lip4 gene transcription.


Assuntos
Drosophila , Fatores de Transcrição , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Drosophila/metabolismo , Genes vif , Imunoglobulina G/metabolismo , Lipase/genética , Lipase/metabolismo , Lipídeos , Luciferases/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
10.
Immunity ; 38(5): 1050-62, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23602766

RESUMO

Cord factor, also called trehalose-6,6'-dimycolate (TDM), is a potent mycobacterial adjuvant. We herein report that the C-type lectin MCL (also called Clec4d) is a TDM receptor that is likely to arise from gene duplication of Mincle (also called Clec4e). Mincle is known to be an inducible receptor recognizing TDM, whereas MCL was constitutively expressed in myeloid cells. To examine the contribution of MCL in response to TDM adjuvant, we generated MCL-deficient mice. TDM promoted innate immune responses, such as granuloma formation, which was severely impaired in MCL-deficient mice. TDM-induced acquired immune responses, such as experimental autoimmune encephalomyelitis (EAE), was almost completely dependent on MCL, but not Mincle. Furthermore, by generating Clec4e(gfp) reporter mice, we found that MCL was also crucial for driving Mincle induction upon TDM stimulation. These results suggest that MCL is an FcRγ-coupled activating receptor that mediates the adjuvanticity of TDM.


Assuntos
Fatores Corda/imunologia , Encefalomielite Autoimune Experimental/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/metabolismo , Receptores de IgG/imunologia , Adjuvantes Imunológicos , Animais , Encefalomielite Autoimune Experimental/microbiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia
11.
RNA Biol ; 19(1): 1143-1152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36329613

RESUMO

Mutations that affect phenotypes have been identified primarily as those that directly alter amino acid sequences or disrupt splice sites. However, some mutations not located in functionally important sites can also affect phenotypes, such as splice-site-creating mutations (SCMs). To investigate how frequent exon extension/shrinkage events induced by SCMs occur in normal individuals, we used personal genome sequencing data and transcriptome data of the corresponding individuals and identified 371 exon extension/shrinkage events in normal individuals. This number was about three times higher than the number of pseudo-exon activation events identified in the previous study. The average numbers of exon extension and exon shrinkage events in each sample were 3.3 and 11.2, respectively. We also evaluated the impact of exon extension/shrinkage events on the resulting transcripts and their protein products and found that 40.2% of the identified events may have possible functional impacts by either generating premature termination codons in transcripts or affecting protein domains. Our results indicated that a certain fraction of SCMs identified in this study can be pathogenic mutations by creating novel splice sites.


Assuntos
Proteínas , Splicing de RNA , Éxons , Mutação , Sequência de Bases , Proteínas/genética , Sítios de Splice de RNA , Íntrons
12.
Nature ; 537(7622): 675-679, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27602517

RESUMO

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Animais , Ansiedade/complicações , Ansiedade/genética , Transtorno do Espectro Autista/complicações , Encéfalo/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Regulação para Baixo , Predisposição Genética para Doença , Heterozigoto , Masculino , Megalencefalia/complicações , Megalencefalia/genética , Camundongos , Camundongos Knockout , Mutação , Penetrância , Fenótipo , Proteínas Repressoras/metabolismo , Comportamento Social , Transcriptoma
13.
Ann Surg ; 274(3): 500-507, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171866

RESUMO

BACKGROUND: No effective molecular targeted therapy has been established for SCC. We conducted a comprehensive study of SCC patients using RNA-sequencing and TCGA dataset to clarify the driver oncogene of SCC. METHOD: Forty-six samples of 23 patients were totally analyzed with RNA-sequencing. We then searched for candidate-oncogenes of SCC using the TCGA database. To identify candidate oncogenes, we used the following 2 criteria: (1) the genes of interest were overexpressed in tumor tissues of SCC patients in comparison to normal tissues; and (2) using an integrated mRNA expression and DNA copy number profiling analysis using the TCGA dataset, the DNA copy number of the genes was positively correlated with the mRNA expression. RESULT: We identified 188 candidate-oncogenes. Among those, the high expression of SLC38A7 was a strong prognostic marker that was significantly associated with a poor prognosis in terms of both overall survival (OS) and recurrence-free survival in the TCGA dataset (P < 0.05). Additionally, 202 resected SCC specimens were also subjected to an immunohistochemical analysis. Patients with the high expression of SLC38A7 (alternative name is sodium-coupled amino acid transporters 7) protein showed significantly shorter OS in comparison to those with the low expression of SLC38A7 protein [median OS 3.9 years (95% confidence interval, 2.4-6.4 years) vs 2.2 years (95% confidence interval, 1.9-4.1 years); log rank test: P = 0.0021]. CONCLUSION: SLC38A7, which is the primary lysosomal glutamine transporter required for the extracellular protein-dependent growth of cancer cells, was identified as a candidate therapeutic target of SCC.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Idoso , Sistema A de Transporte de Aminoácidos , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/cirurgia , Variações do Número de Cópias de DNA , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Oncogenes/genética , Prognóstico , RNA Mensageiro/metabolismo , Estudos Retrospectivos
14.
Development ; 145(23)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518625

RESUMO

Previous studies have established that fetal Leydig cells (FLCs) and adult Leydig cells (ALCs) show distinct functional characteristics. However, the lineage relationship between FLCs and ALCs has not been clarified yet. Here, we reveal that a subset of FLCs dedifferentiate at fetal stages to give rise to ALCs at the pubertal stage. Moreover, the dedifferentiated cells contribute to the peritubular myoid cell and vascular pericyte populations in the neonatal testis, and these non-steroidogenic cells serve as potential ALC stem cells. We generated FLC lineage-specific Nr5a1 (Ad4BP/SF-1) gene-disrupted mice and mice lacking the fetal Leydig enhancer (FLE) of the Nr5a1 gene. Phenotypes of these mice support the conclusion that most of the ALCs arise from dedifferentiated FLCs, and that the FLE of the Nr5a1 gene is essential for both initial FLC differentiation and pubertal ALC redifferentiation.


Assuntos
Células-Tronco Adultas/citologia , Desdiferenciação Celular , Feto/citologia , Células Intersticiais do Testículo/citologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Linhagem da Célula , Elementos Facilitadores Genéticos/genética , Fibrose , Integrases/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fenótipo , Deleção de Sequência/genética , Fator Esteroidogênico 1/metabolismo , Testículo/citologia , Testículo/transplante
15.
RNA Biol ; 18(3): 382-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32865117

RESUMO

Causative mutations for human genetic disorders have mainly been identified in exonic regions that code for amino acid sequences. Recently, however, it has been reported that mutations in deep intronic regions can also cause certain human genetic disorders by creating novel splice sites, leading to pseudo-exon activation. To investigate how frequently pseudo-exon activation events occur in normal individuals, we conducted in silico identification of such events using personal genome data and corresponding high-quality transcriptome data. With rather stringent conditions, on average, 2.6 pseudo-exon activation events per individual were identified. More pseudo-exon activation events were found in 5' donor splice sites than in 3' acceptor splice sites. Although pseudo-exon activation events have sporadically been reported as causative mutations in genetic disorders, it is revealed in this study that such events can be observed in normal individuals at a certain frequency. We estimate that human genomes typically contain on average at least 10 pseudo-exon activation events. The actual number should be higher than this, because we used stringent criteria to identify pseudo-exon activation events. This suggests that it is worth considering the possibility of pseudo-exon activation when searching for causative mutations of genetic disorders if candidate mutations are not identified in coding regions or RNA splice sites.


Assuntos
Biologia Computacional , Éxons , Genômica , Pseudogenes , Ativação Transcricional , Transcriptoma , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA , Splicing de RNA , Sequências Reguladoras de Ácido Nucleico
16.
Dev Biol ; 445(1): 80-89, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392839

RESUMO

Germline sex determination is an essential process for the production of sexually dimorphic gametes. In medaka, Forkhead box L3 (foxl3) was previously identified as a germ cell-intrinsic regulator of sex determination that suppresses the initiation of spermatogenesis in female germ cells. To reveal the molecular mechanism of germline sex determination by foxl3, we conducted the following four analyses: Comparison of transcriptomes between wild-type and foxl3-mutant germ cells; epistatic analysis; identification of the FOXL3-binding motif; and ChIP-qPCR assay using a FOXL3-monoclonal antibody. We identified two candidate genes acting downstream of foxl3: Rec8a and fbxo47. It has been known that Rec8 regulates sister chromatid cohesion and Fbxo47 acts as a ubiquitin E3 ligase. These functions have not been, however, associated with sexual differentiation in germ cells. Our results uncover novel components acting downstream of foxl3, providing insights into the mechanism of germline sex determination.


Assuntos
Oryzias/embriologia , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/genética , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica/métodos , Células Germinativas , Gônadas/citologia , Masculino , Oogênese/fisiologia , Oryzias/genética , Espermatogênese/fisiologia
17.
Mamm Genome ; 31(3-4): 86-94, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32166433

RESUMO

In an alignment of closely related genomic sequences, the existence of discordant mutation sites, which do not reflect the phylogenetic relationship of the genomes, is often observed. Although these discordant mutation sites are thought to have emerged by ancestral polymorphism or gene flow, their frequency and distribution in the genome have not yet been analyzed in detail. Using the genome sequences of all protein coding genes of 25 inbred rat strains, we analyzed the frequency and genome-wide distribution of the discordant mutation sites. From the comparison of different substrains, it was found that these loci are not substrain specific, but are common among different groups of substrains, suggesting that the discordant sites might have mainly emerged through ancestral polymorphism. It was also revealed that the discordant sites are not uniformly distributed along chromosomes, but are concentrated at certain genomic loci, such as RT1, major histocompatibility complex of rats, and olfactory receptors, indicating that genes known to be highly polymorphic tend to have more discordant sites. Our results also showed that loci with a high density of discordant sites are also rich in heterozygous variants, even though these are inbred strains.


Assuntos
Genoma/genética , Genômica/métodos , Polimorfismo Genético/genética , Animais , Sequência de Bases , Mapeamento Cromossômico/métodos , Loci Gênicos/genética , Complexo Principal de Histocompatibilidade/genética , Filogenia , Ratos , Ratos Endogâmicos , Receptores Odorantes/genética
18.
Nucleic Acids Res ; 46(D1): D229-D238, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126224

RESUMO

DBTSS (Database of Transcriptional Start Sites)/DBKERO (Database of Kashiwa Encyclopedia for human genome mutations in Regulatory regions and their Omics contexts) is the database originally initiated with the information of transcriptional start sites and their upstream transcriptional regulatory regions. In recent years, we updated the database to assist users to elucidate biological relevance of the human genome variations or somatic mutations in cancers which may affect the transcriptional regulation. In this update, we facilitate interpretations of disease associated genomic variation, using the Japanese population as a model case. We enriched the genomic variation dataset consisting of the 13,368 individuals collected for various genome-wide association studies and the reference epigenome information in the surrounding regions using a total of 455 epigenome datasets (four tissue types from 67 healthy individuals) collected for the International Human Epigenome Consortium (IHEC). The data directly obtained from the clinical samples was associated with that obtained from various model systems, such as the drug perturbation datasets using cultured cancer cells. Furthermore, we incorporated the results obtained using the newly developed analytical methods, Nanopore/10x Genomics long-read sequencing of the human genome and single cell analyses. The database is made publicly accessible at the URL (http://dbtss.hgc.jp/).


Assuntos
Bases de Dados de Ácidos Nucleicos , Sítio de Iniciação de Transcrição , Povo Asiático/genética , Epigenômica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Variação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Armazenamento e Recuperação da Informação , Internet , Japão , Mutação , Sequências Reguladoras de Ácido Ribonucleico , Análise de Célula Única
19.
Am J Hum Genet ; 99(5): 1045-1058, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27843122

RESUMO

DNA methylation is globally reprogrammed after fertilization, and as a result, the parental genomes have similar DNA-methylation profiles after implantation except at the germline differentially methylated regions (gDMRs). We and others have previously shown that human blastocysts might contain thousands of transient maternally methylated gDMRs (transient mDMRs), whose maternal methylation is lost in embryonic tissues after implantation. In this study, we performed genome-wide allelic DNA methylation analyses of purified trophoblast cells from human placentas and, surprisingly, found that more than one-quarter of the transient-in-embryo mDMRs maintained their maternally biased DNA methylation. RNA-sequencing-based allelic expression analyses revealed that some of the placenta-specific mDMRs were associated with expression of imprinted genes (e.g., TIGAR, SLC4A7, PROSER2-AS1, and KLHDC10), and three imprinted gene clusters were identified. This approach also identified some X-linked gDMRs. Comparisons of the data with those from other mammals revealed that genomic imprinting in the placenta is highly variable. These findings highlight the incomplete erasure of germline DNA methylation in the human placenta; understanding this erasure is important for understanding normal placental development and the pathogenesis of developmental disorders with imprinting effects.


Assuntos
Alelos , Perfilação da Expressão Gênica , Impressão Genômica , Placenta/metabolismo , Proteínas Reguladoras de Apoptose , Blastocisto/citologia , Blastocisto/metabolismo , Metilação de DNA , Exoma , Feminino , Genes Ligados ao Cromossomo X , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Anotação de Sequência Molecular , Monoéster Fosfórico Hidrolases , Placenta/citologia , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de RNA , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
20.
Biochem Biophys Res Commun ; 496(1): 133-139, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29305858

RESUMO

Cerebral palsy (CP) is a major neuronal disease and the most common movement disorder in children. Although environmental factors leading to CP have been greatly investigated, the genetic mechanism underlying CP is not well understood. Here we focused on two clinical reports that characterized a deletion involving the KANK1 gene locus in the 9p24.3 region. One report shows spastic CP and the other shows no spastic CP phenotype. Based on the epigenetic status and evolutionary conservation, we first found a functional genomic element at the noncoding region that was deleted only in patients with spastic CP. This element contains the retinoic acid receptor/retinoid X receptor (RAR/RXR) complex-binding motif that is widely conserved among placental mammals. RAR/RXR ChIP-seq data from mouse F9 embryonal carcinoma cells that were treated with trans-retinoic acids showed that the element has a binding ability. In addition, data regarding chromosome conformation capture from mouse neural progenitor and ES cells suggested that the element spatially interacts with the Doublesex and mab-3 related transcription factor 3 (Dmrt3) gene promoter that is located approximately 120 kb downstream of the RAR/RXR-binding site. Dmrt3 is detected in the developing mouse forebrain and in some interneurons in the spinal cord, and it works as a locomotion coordinator in horses and mice. Thus, the deletion of the cis-regulatory element for DMRT3 in humans may cause impaired development of the forebrain and gait abnormalities, resulting in spastic CP. In conclusion, this study provides new mechanistic insights into the genetic basis of CP.


Assuntos
Paralisia Cerebral/genética , Mapeamento Cromossômico/métodos , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética , Sítios de Ligação , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA