Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0052224, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899899

RESUMO

The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. In vitro assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation. IMPORTANCE: Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.

2.
PLoS Pathog ; 19(8): e1011591, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585449

RESUMO

Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Animais , Camundongos , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Ativação Transcricional , Regulação para Cima
3.
J Hepatol ; 80(6): 858-867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336347

RESUMO

BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Animais , Vírus da Hepatite B/genética , Camundongos , Células Hep G2 , Hepatite B Crônica/virologia , Splicing de RNA , Mutação , RNA Viral/genética , RNA Viral/metabolismo , Microscopia Crioeletrônica
4.
J Virol ; 97(10): e0128723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800948

RESUMO

IMPORTANCE: The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.


Assuntos
Vírus da Hepatite B , Hepatite B , Proteína 1 Associada a ECH Semelhante a Kelch , Transdução de Sinais , Replicação Viral , Humanos , Elementos de Resposta Antioxidante , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
5.
Microbiol Immunol ; 68(5): 179-184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433377

RESUMO

BK polyomavirus (BKPyV) was the first human polyomavirus to be isolated from an immunosuppressed kidney transplant recipient in 1971. BKPyV reactivation causes BKPyV-associated nephropathy and hemorrhagic cystitis. However, the mechanisms underlying BKPyV replication remain unclear. In the present study, we performed the long-term cultivation of COS-7 cells transfected with archetype KOM-5 DNA, which were designated as COS-BK cells. BKPyV derived from COS-BK cells was characterized by analyzing the amount of the virus based on hemagglutination, viral replication, and the production of viral protein 1 (VP1). Immunostaining showed that VP1-positive cells accounted for a small percentage of COS-BK cells. The nucleotide sequences encompassing the origin of the DNA replication of BKPyV derived from COS-BK cells were generated from KOM-5 by the deletion of an 8-bp sequence, which did not involve T antigen binding sites. BKPyV replicated most efficiently in COS-BK cells in DMEM containing 2% fetal bovine serum. These results indicate that COS-BK cells are a suitable culture system for studying the persistent infection of archetype BKPyV.


Assuntos
Vírus BK , Infecções por Polyomavirus , Replicação Viral , Vírus BK/fisiologia , Vírus BK/genética , Animais , Chlorocebus aethiops , Células COS , Infecções por Polyomavirus/virologia , Humanos , Proteínas do Capsídeo/genética , DNA Viral/genética , Infecção Persistente/virologia , Antígenos Virais de Tumores/genética , Infecções Tumorais por Vírus/virologia
6.
Bioorg Med Chem ; 110: 117813, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38954919

RESUMO

Nucleoside reverse transcriptase inhibitors (NRTIs) have been extensively studied as drugs targeting HIV RT. However, the practice or use of approved NRTIs lacking the 3'-hydroxy group often promotes frequent HIV mutations and generates drug-resistance. Here, we describe a novel NRTI with 2'-ß-methylselenyl modification. We found that this modification inhibited the DNA elongation reaction by HIV-1 RT despite having a 3'-hydroxy group. Moreover, the conformation of this nucleoside analog is controlled at C3'-endo, a conformation that resists excision from the elongating DNA by HIV RT. Accordingly, the designed analogs exhibited activity against both wild-type HIV and multidrug-resistant HIV mutants.

7.
Eur J Immunol ; 51(6): 1519-1530, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710617

RESUMO

Ursodeoxycholic acid (UDCA) is the primary treatment for primary biliary cholangitis (PBC), but its mechanism of action remains unclear. Studies suggest that UDCA enhances NF erythroid 2-related factor 2 (NFE2L2) expression and that the interaction between IFN-γ and C-X3-C motif chemokine ligand 1 (CX3CL1) facilitates biliary inflammation in PBC. Therefore, we examined the effects of UDCA on the expression of IFN-γ and CX3CL1 in in vitro and in vivo PBC models such as human liver tissue, a murine model, cell lines, and isolated human intrahepatic biliary epithelial cells (IHBECs). We observed a significant decrease in IFN-γ mRNA levels and positive correlations between IFN-γ and CX3CL1 mRNA levels post-UDCA treatment in PBC livers. NFE2L2-mediated transcriptional activation was significantly enhanced in UDCA-treated Jurkat cells. In 2-octynoic acid-immunized mice, IFN-γ production by liver-infiltrating T cells was dependent on NFE2L2 activation. IFN-γ significantly and dose-dependentlyinduced CX3CL1 expression, which was significantly decreased in HuCC-T1 cells and IHBECs upon UDCA treatment. These results suggest that UDCA-induced suppression of IFN-γ and CX3CL1 production attenuates the chemotactic and adhesive abilities of liver-infiltrating T cells in PBC.


Assuntos
Quimiocina CX3CL1/metabolismo , Colagogos e Coleréticos/uso terapêutico , Células Epiteliais/fisiologia , Interferon gama/metabolismo , Cirrose Hepática Biliar/tratamento farmacológico , Fígado/imunologia , Linfócitos T/imunologia , Ácido Ursodesoxicólico/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiotaxia , Feminino , Humanos , Terapia de Imunossupressão , Interferon gama/genética , Células Jurkat , Fígado/patologia , Cirrose Hepática Biliar/imunologia , Masculino , Pessoa de Meia-Idade
8.
J Virol ; 95(15): e0076721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980595

RESUMO

Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of MafF led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1ß (IL-1ß) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, MafF expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. IMPORTANCE HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1ß and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.


Assuntos
Hepatite B Crônica/patologia , Imunidade Inata/imunologia , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Interleucina-1beta/imunologia , Fator de Transcrição MafF/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Necrose Tumoral alfa/imunologia
9.
Hepatology ; 73(2): 520-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32446278

RESUMO

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Precursores de Proteínas/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Precursores de Proteínas/genética
10.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955844

RESUMO

In microbiological research, it is important to understand the time course of each step in a pathogen's lifecycle and changes in the host cell environment induced by infection. This study is the first to develop a real-time monitoring system that kinetically detects luminescence reporter activity over time without sampling cells or culture supernatants for analyzing the virus replication. Subgenomic replicon experiments with hepatitis C virus (HCV) showed that transient translation and genome replication can be detected separately, with the first peak of translation observed at 3-4 h and replication beginning around 20 h after viral RNA introduction into cells. From the bioluminescence data set measured every 30 min (48 measurements per day), the initial rates of translation and replication were calculated, and their capacity levels were expressed as the sums of the measured signals in each process, which correspond to the areas on the kinetics graphs. The comparison of various HuH-7-derived cell lines showed that the bioluminescence profile differs among cell lines, suggesting that both translation and replication capacities potentially influence differences in HCV susceptibility. The effects of RNA mutations within the 5' UTR of the replicon on viral translation and replication were further analyzed in the system developed, confirming that mutations to the miR-122 binding sites primarily reduce replication activity rather than translation. The newly developed real-time monitoring system should be applied to the studies of various viruses and contribute to the analysis of transitions and progression of each process of their life cycle.


Assuntos
Hepacivirus , Hepatite C , Regiões 5' não Traduzidas , Hepatite C/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Replicon/genética , Replicação Viral
11.
J Proteome Res ; 20(3): 1535-1543, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33356312

RESUMO

The GeLC-MS workflow, which combines low-cost, easy-to-use sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) with liquid chromatography-mass spectrometry (LC-MS), is very popular in current bottom-up proteomics. However, GeLC-MS requires that PAGE-separated proteins undergo overnight enzymatic digestion in a gel, resulting in more than 20 h of sample preparation for LC-MS. In this study, we overcame the limitations of GeLC-MS by developing a rapid digestion workflow for PAGE separation of proteins using N,N'-bis(acryloyl)cystamine (BAC) cross-linked gels that can be solubilized by reductive treatment. Making use of an established workflow called BAC-DROP (BAC-gel dissolution to digest PAGE-resolved objective proteins), crude proteome samples were fractionated based on molecular weight by BAC cross-linked PAGE. After fractionation, the gel fragments were reductively dissolved in under 5 min, and in-solution trypsin digestion of the protein released from the gel was completed in less than 1 h at 70 °C, equivalent to a 90-95% reduction in time compared to conventional in-gel trypsin digestion. The introduction of the BAC-DROP workflow to the MS assays for inflammatory biomarker CRP and viral marker HBsAg allowed for serum sample preparation to be completed in as little as 5 h, demonstrating successful marker quantification from a 0.5 µL sample of human serum.


Assuntos
Proteoma , Proteômica , Digestão , Eletroforese em Gel de Poliacrilamida , Humanos , Fluxo de Trabalho
12.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661519

RESUMO

Ubiquitin and ubiquitin-like protein modification play important roles in modulating the functions of viral proteins in many viruses. Here we demonstrate that hepatitis B virus (HBV) X protein (HBx) is modified by ISG15, which is a type I IFN-inducible, ubiquitin-like protein; this modification is called ISGylation. Immunoblot analyses revealed that HBx proteins derived from four different HBV genotypes accepted ISGylation in cultured cells. Site-directed mutagenesis revealed that three lysine residues (K91, K95 and K140) on the HBx protein, which are well conserved among all the HBV genotypes, are involved in acceptance of ISGylation. Using expression plasmids encoding three known E3 ligases involved in the ISGylation to different substrates, we found that HERC5 functions as an E3 ligase for HBx-ISGylation. Treatment with type I and type III IFNs resulted in the limited suppression of HBV replication in Hep38.7-Tet cells. When cells were treated with IFN-α, silencing of ISG15 resulted in a marked reduction of HBV replication in Hep38.7-Tet cells, suggesting a role of ISG15 in the resistance to IFN-α. In contrast, the silencing of USP18 (an ISG15 de-conjugating enzyme) increased the HBV replication in Hep38.7-Tet cells. Taken together, these results suggest that the HERC5-mediated ISGylation of HBx protein confers pro-viral functions on HBV replication and participates in the resistance to IFN-α-mediated antiviral activity.


Assuntos
Citocinas/metabolismo , Vírus da Hepatite B/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Linhagem Celular , Farmacorresistência Viral , Vírus da Hepatite B/genética , Humanos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Interferons/farmacologia , Transativadores/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Interferon lambda
13.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645450

RESUMO

A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a "membranous web" structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication.IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.


Assuntos
Estruturas da Membrana Celular/metabolismo , Hepacivirus/fisiologia , Proteínas de Membrana/metabolismo , RNA Viral/biossíntese , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Estruturas da Membrana Celular/genética , Estruturas da Membrana Celular/virologia , Genótipo , Humanos , Proteínas de Membrana/genética , RNA Viral/genética , Proteínas não Estruturais Virais/genética
14.
Transpl Infect Dis ; 23(6): e13736, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546601

RESUMO

BACKGROUND: BK polyomavirus (BKV) can cause hemorrhagic cystitis (HC) in immunocompromised patients after hematopoietic stem cell transplantation (HSCT). It remains unclear whether nosocomial BKV infections occur. During a 9-month period, an increase in BKV-associated HC (BKV-HC) cases was observed at our institution. AIM: The BKV-HC cluster population was compared with populations of HSCT patients from before and after the BKV-HC cluster to evaluate whether nosocomial BKV transmission had occurred. METHODS: A retrospective analysis was carried out to assess the risk of patients developing BKV-HC after HSCT. The background data of the cluster patients were compared with those of the patients who underwent HSCT before or after the cluster, and the collected BKV isolates were serotyped. RESULTS: BKV-HC involving grade ≥2 hematuria occurred in six of 15 HSCT recipients during a 9-month period. The incidence of BKV-HC was significantly higher in this period than in the other periods (p = 0.0014). There were no significant differences in the patients' background data between the cluster and non-cluster periods, including in terms of risk factors for BKV-HC. Serotype analyses of BKV revealed that the BKV detected in the urine samples from four of the six BKV-HC patients belonged to subtype Ic. The gene sequences of these four BKV exhibited >99.5% homology. CONCLUSION: Our study suggests that nosocomial BKV infections may occur after HSCT. Although many cases of BKV-HC are caused by the reactivation of a latent virus, it is necessary to employ appropriate hygiene measures when cases of BKV-HC occur.


Assuntos
Vírus BK , Cistite , Transplante de Células-Tronco Hematopoéticas , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Vírus BK/genética , Cistite/epidemiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Infecções por Polyomavirus/epidemiologia , Estudos Retrospectivos , Infecções Tumorais por Vírus/epidemiologia
15.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567989

RESUMO

Hepatitis B virus (HBV) infection is a major risk factor for the development of chronic liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). A growing body of evidence suggests that HBV X protein (HBx) plays a crucial role in viral replication and HCC development. Here, we identified peroxiredoxin 1 (Prdx1), a cellular hydrogen peroxide scavenger, as a novel HBx-interacting protein. Coimmunoprecipitation analysis coupled with site-directed mutagenesis revealed that the region from amino acids 17 to 20 of the HBx, particularly HBx Cys17, is responsible for the interaction with Prdx1. Knockdown of Prdx1 by siRNA significantly increased the levels of intracellular HBV RNA, HBV antigens, and extracellular HBV DNA, whereas knockdown of Prdx1 did not increase the activities of HBV core, enhancer I (Enh1)/X, preS1, and preS2/S promoters. Kinetic analysis of HBV RNA showed that knockdown of Prdx1 inhibited HBV RNA decay, suggesting that Prdx1 reduces HBV RNA levels posttranscriptionally. The RNA coimmunoprecipitation assay revealed that Prdx1 interacted with HBV RNA. The exosome component 5 (Exosc5), a member of the RNA exosome complexes, was coimmunoprecipitated with Prdx1, suggesting its role in regulation of HBV RNA stability. Taken together, these results suggest that Prdx1 and Exosc5 play crucial roles in host defense mechanisms against HBV infection.IMPORTANCE Hepatitis B virus (HBV) infection is a major global health problem. HBx plays important roles in HBV replication and viral carcinogenesis through its interaction with host factors. In this study, we identified Prdx1 as a novel HBx-binding protein. We provide evidence suggesting that Prdx1 promotes HBV RNA decay through interaction with HBV RNA and Exosc5, leading to downregulation of HBV RNA. These results suggest that Prdx1 negatively regulates HBV propagation. Our findings may shed new light on the roles of Prdx1 and Exosc5 in host defense mechanisms in HBV infection.


Assuntos
Antígenos de Neoplasias/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Vírus da Hepatite B/genética , Hepatite B/metabolismo , Hepatite B/virologia , Peroxirredoxinas/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células Hep G2 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunoprecipitação/métodos , Cinética , Regiões Promotoras Genéticas/genética , Proteínas Virais Reguladoras e Acessórias , Replicação Viral/genética
16.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626683

RESUMO

Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.


Assuntos
Hepacivirus/genética , Hepatite C/metabolismo , Hepatite C/virologia , Gotículas Lipídicas/metabolismo , RNA Viral/genética , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/virologia , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética , Células Vero , Replicação Viral/genética
17.
Respir Res ; 21(1): 282, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109186

RESUMO

BACKGROUND: Viral respiratory tract infections, such as influenza A virus (IAV), are common and life-threatening illnesses worldwide. The mechanisms by which viruses are removed from the respiratory tract are indispensable for airway host defense. Mucociliary clearance is an airway defense mechanism that removes pathogens from the respiratory tract. The coordination and modulation of the ciliary beating of airway epithelial cells play key roles in maintaining effective mucociliary clearance. However, the impact of respiratory virus infection on ciliary activity and mucociliary clearance remains unclear. METHODS: Tracheal samples were taken from wild-type (WT) and Toll-like receptor 3 (TLR3)-knockout (KO) mice. Transient organ culture of murine trachea was performed in the presence or absence of IAV, polyI:C, a synthetic TLR3 ligand, and/or reagents. Subsequently, cilia-driven flow and ciliary motility were analyzed. To evaluate cilia-driven flow, red fluorescent beads were loaded into culture media and movements of the beads onto the tracheal surface were observed using a fluorescence microscope. To evaluate ciliary motility, cilia tips were labeled with Indian ink diluted with culture medium. The motility of ink-labeled cilia tips was recorded by high-speed cameras. RESULTS: Short-term IAV infection significantly increased cilia-driven flow and ciliary beat frequency (CBF) compared with the control level in WT culture. Whereas IAV infection did not elicit any increases of cilia-driven flow and CBF in TLR3-KO culture, indicating that TLR3 was essential to elicit an increase of cilia-driven flow and CBF in response to IAV infection. TLR3 activation by polyI:C readily induced adenosine triphosphate (ATP) release from the trachea and increases of cilia-driven flow and CBF in WT culture, but not in TLR3-KO culture. Moreover, blockade of purinergic P2 receptors (P2Rs) signaling using P2R antagonist, suramin, suppressed polyI:C-mediated increases of cilia-driven flow and CBF, indicating that TLR3-mediated ciliary activation depended on released extracellular ATP and the autocrine ATP-P2R loop. CONCLUSIONS: IAV infection readily increases ciliary activity and cilia-driven flow via TLR3 activation in the airway epithelium, thereby hastening mucociliary clearance and "sweeping" viruses from the airway as an initial host defense response. Mechanically, extracellular ATP release in response to TLR3 activation promotes ciliary activity through autocrine ATP-P2R loop.


Assuntos
Cílios/metabolismo , Vírus da Influenza A/fisiologia , Depuração Mucociliar/fisiologia , Mucosa Respiratória/metabolismo , Receptor 3 Toll-Like/deficiência , Animais , Cílios/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Técnicas de Cultura de Órgãos , Mucosa Respiratória/virologia
18.
J Immunol ; 201(8): 2392-2402, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30224514

RESUMO

IFN-λ is a cytokine expressed in epithelial tissues and plays a central role in antiviral mucosal immune response. The expression of IFN-λ in the airway is impaired in chronic airway diseases (e.g., asthma, chronic obstructive pulmonary disease), which renders patients susceptible to viral infection. IL-17A is associated with asthma and chronic obstructive pulmonary disease pathogenesis; however, IL-17A regulation of IFN-λ expression remains unclear. The aim of the current study is to clarify IL-17A-mediated regulatory mechanisms of IFN-λ expression in human airway epithelial cells. In this study, we have shown that polyinosinic:polycytidylic acid (polyI:C) and influenza A virus (IAV) infection increased IFN-λ expression at mRNA and protein levels in primary cultures of normal human bronchial epithelial cells, whereas IL-17A attenuated polyI:C- or IAV-induced IFN-λ expression. IFN-λ receptor 1 knockdown and a JAK inhibitor, ruxolitinib, attenuated polyI:C-induced IFN-λ expression, confirming that a positive autocrine feedback loop, the IFN-λ receptor-JAK-STAT pathway, was involved in IFN-λ expression. In Western blotting analysis, we demonstrated that polyI:C and IAV infection induced STAT1 phosphorylation in normal human bronchial epithelial cells, whereas IL-17A suppressed polyI:C- or IAV-mediated STAT1 phosphorylation. Furthermore, we found that cotreatment with IL-17A and polyI:C or IAV infection synergistically increased suppressor of cytokine signaling (SOCS)1 and SOCS3 expression. SOCS1 small interfering RNA and SOCS3 small interfering RNA negated the inhibitory effect of IL-17A in polyI:C-induced IFN-λ expression by restoring attenuated STAT1 phosphorylation. Taken together, these findings indicate that IL-17A attenuates virus-induced IFN-λ expression by enhancing SOCS1 and SOCS3 expression to inhibit autocrine signaling loops in human airway epithelial cells.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Interferons/metabolismo , Interleucina-17/metabolismo , Mucosa Respiratória/fisiologia , Brônquios/patologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/genética , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Receptores de Citocinas/genética , Receptores de Interferon , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
19.
Biochem Biophys Res Commun ; 514(3): 785-790, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31079928

RESUMO

Occludin (OCLN), an integral tetra-spanning plasma membrane protein, is a host entry factor essential for hepatitis C virus (HCV) infection, making it a promising host-targeting molecule for HCV therapeutic intervention. We previously generated rat anti-OCLN monoclonal antibodies (mAbs) that strongly prevented HCV infection in vitro and in vivo. In the present study, we attempted to improve the druggability of the extracellular loop domain-recognizing anti-OCLN mAbs, namely clones 1-3 and 37-5, using genetic engineering. To avoid adverse reactions induced by antibody-dependent cellular cytotoxicity and enhance the antibody stability, we developed human-rat chimeric immunoglobulin G4 S228P mutant (IgG4m) forms of clones 1-3 and 37-5 (named Xi 1-3 and Xi 37-5, respectively) by grafting the variable regions of the light and heavy chains of each rat anti-OCLN mAb into those of human IgG4m. The constructed Xi 1-3 and Xi 37-5 chimeras demonstrated levels of affinity and specificity similar to each parental rat anti-OCLN mAb, and the Fcγ receptor Ⅲa was not activated by the antigen-bound chimeric mAbs, as expected. Both chimeric mAbs inhibited in vitro infection with various HCV genotypes. These results indicate that the IgG4m forms of human-rat chimeric anti-OCLN mAbs may be potential candidate molecules of host-targeting antivirals with pan-genotypic anti-HCV activity.


Assuntos
Anticorpos Monoclonais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/virologia , Ocludina/imunologia , Animais , Linhagem Celular , Humanos , Imunoglobulina G/metabolismo , Concentração Inibidora 50 , Células Jurkat , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Receptores de IgG/metabolismo
20.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437969

RESUMO

Hepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in in vitro cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening. These four MAbs bound to human OCLN with a very high affinity (antibody dissociation constant of <1 nM). One MAb recognized the second loop of human and mouse OCLN, whereas the three other MAbs recognized the first loop of human OCLN. All MAbs inhibited HCV infection in Huh7.5.1-8 cells in a dose-dependent manner without apparent cytotoxicity. Additionally, the anti-OCLN MAbs prevented both cell-free HCV infection and cell-to-cell HCV transmission. Kinetic studies with anti-OCLN and anti-claudin-1 (CLDN1) MAbs demonstrated that OCLN interacts with HCV after CLDN1 in the internalization step. Two selected MAbs completely inhibited HCV infection in human liver chimeric mice without apparent adverse effects. Therefore, OCLN would be an appropriate host target for anti-HCV entry inhibitors, and anti-OCLN MAbs may be promising candidates for novel anti-HCV agents, particularly in combination with direct-acting HCV antiviral agents.IMPORTANCE HCV entry into host cells is thought to be a very complex process involving various host entry factors, such as the tight junction proteins claudin-1 and OCLN. In this study, we developed novel functional MAbs that recognize intact extracellular domains of OCLN, which is essential for HCV entry into host cells. The established MAbs against OCLN, which had very high affinity and selectivity for intact OCLN, strongly inhibited HCV infection both in vitro and in vivo Using these anti-OCLN MAbs, we found that OCLN is necessary for the later stages of HCV entry. These anti-OCLN MAbs are likely to be very useful for understanding the OCLN-mediated HCV entry mechanism and might be promising candidates for novel HCV entry inhibitors.


Assuntos
Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Carcinoma Hepatocelular/prevenção & controle , Modelos Animais de Doenças , Hepatite C/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Ocludina/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/virologia , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Ocludina/imunologia , Ratos Wistar , Junções Íntimas , Células Tumorais Cultivadas , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA